

$m\ddot{x} + c\dot{x} + (k_{mechanical} + k_{electrical})x = F_{excite}(V_e)$

This stiffness is generated from a parallel plate electrostatic actuator: $k_{electrical} = \frac{\varepsilon_0 A V_t^2}{\left(d - x_{||}\right)^3}$

where V_t is the voltage applied across the plates, d is the initial gap, x_{μ} is the stable point, and A is the area of the plate.

Introduction

We use nonlinear mixing to raise small, low frequency signals above the noise floor

- Using a characterized nonlinear component in an otherwise linear system, we can convolve a small amplitude, low frequency signal (signal) with a high frequency, high amplitude signal ("carrier" or "pump").
- This is a subset of a phenomenon known as 'mixing', wherein the convolution of two signals produces the set of all of the harmonics.
- If, at the output, we filter all but one of the harmonics, then we can demodulate this signal to restore the initial input.

 $\sum_{m=0}^{\infty} \sum_{n=-\infty}^{\infty} \frac{mP_{m,n}}{mf_1 + nf_2} = 0 \quad \text{and} \quad \sum_{m=-\infty}^{\infty} \sum_{n=0}^{\infty} \frac{nP_{m,n}}{mf_1 + nf_2} = 0$

where P_{m,n} is the power at that frequency.

Simple case of only one load (f1,1), the Manley-Rowe equations reduce to:

 $\frac{P_{0,1}}{f_{0,1}} + \frac{P_{1,1}}{f_{1,1}} = 0 \quad \text{and} \quad \frac{P_{1,0}}{f_{1,0}} + \frac{P_{1,1}}{f_{1,1}} = 0 \quad \text{where gain (P_{1,1}/P_{1,0}) depends} \\ \text{only on the ratio of frequencies}$

C(t)

where $f_{1,0} = f_a$ and $f_{0,1} = f_b$

C(t) is the time-varying reactance

 $f_{m,n}$ is a perfect bandpass filter at frequency f m,n

(~)fa

Atomic Force Sensing

Here, we demonstrate that the resonant frequency depends on the distance between the tip and the sample. The system is driven by a 5 V pseudo-random signal The sample approach actuator is ramped from 16 to 19.5 V.

Parametric Amplification of Sensed Measurement

Here, we can see all of the harmonics generated when we operate the parametric amplifier. Note how the harmonics near the pump are largest amplitude.

Pump is 3 V p-p with 5 V DC. Signal is pseudo-random at 5 V from 1 to 3 kHz.

Clearer view of gain. This is a "cross-section" at a sample approach voltage of 10.8 V.

The tip is resonating at 2898 Hz at -28.1 dBV. The output signal is at 6145 Hz at -17.65 dBV. Gain is 10.45 dB.

The highest gain we have measured is 47.75 dB.

On-chip preamplification of signals

•Amplifier integrated with sensor

•Upconvert to a higher frequency

•No transistors

Low noise gain

•Reduce effect of parasitic capacitance

•No need to integrate VLSI with MEMS

We rotate the previous data to give a clearer view of the

-10毁

.⊑ -20 ⊕

-30 🗒

-40 ਲੋ

-50 😇

-60 🗄

relative amplitudes

200

Measurement Techniques

The state (i.e. displacement) of the system was detected using a capacitive sensor via amplitude modulation techniques (carrier frequency = 100 kHz, bandwidth = 8.6 kHz).

All leads are coaxial/shielded from the pins of the differential amplifier to the pins of the packaged device to reduce parasitic capacitance/ambient effects.

The noise floor of the circuit corresponds to ~0.9 nm, as calibrated by a Polytec OFV3001 Laser Vibrometer system.

Overview

Parametric Amplifier Subsystem •Gain of 49.9 dB •Linear amplification •Observes Manley-Rowe behavior •No transistors

AFM Subsystem •Displays frequency shift of 62.4 % Integrated sample

Complete System

•Maximum measured gain of 47.7 dB •Fully integrated (no assembly or alignment) •Parametric amplifier mixes and amplifies results of AFM sensor

Acknowledgements

This work would not have been possible without the support of the following:

• The members of the MacDonald Research Group

• The CNF Staff

• Kionix Inc.

• DARPA