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SUMMARY

We have built a functional MEMS-based parametric
amplifier. This system amplifies the output of a MEMS-
based atomic-scale force sensor. We have separately
characterized the two main components (parametric am-
plifier and atomic-scale force sensor) in addition to char-
acterization of the complete system. The parametric am-
plifier provides a gain of 49.9 dB. The force sensor dis-
plays a frequency shift of 62.4% when the gap is small.
When combined into a complete system, the output of the
force sensor is amplified by 47.7 dB. Our complete sys-
tem is fully monolithic, with built-in actuation, displace-
ment detection, bandpass filtering, and nonlinear mixing.
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INTRODUCTION

One of the fascinating aspects of MEMS is the capabil-
ity to integrate formerly incompatible components into
one monolithic system. In this work, we present such
an application: integrating an atomic-scale force sensor
with a mechanical parametric amplifier. By integrating
our parametric amplifier with the sensor, we amplify our
signal before it leaves the chip, thereby reducing possible
deleterious influences (via increased signal-to-noise ra-
tio) from wirebonds, package pins, and external wiring.

The system we describe is entirely monolithic, includ-
ing tip actuation, signal amplification, and capacitive dis-
placement detection all on one chip. Everything neces-
sary for the measurement, other than signal sources, was
created on one 6 mm by 6 mm chip with the very straight-
forward fabrication process of SCREAM [1].

A parametric amplifier uses a nonlinear or time-
varying component in an otherwise linear system to pro-
duce power gain for an input signal. There are two inputs,
the signal to be amplified and a pump signal. The non-
linear component acts as a frequency mixer which cre-
ates all of the harmonics of the two input frequencies. If
we filter out all of the harmonics except for one (the out-
put frequency), the powers from the input signal and the
pump signal will be transferred to this output frequency
to achieve net power gain.

An AFM is a device which detects the atomic-scale
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Figure 1: Manley-Rowe circuit model.

forces including the van der Waals (vdW) forces between
two bodies. AFM systems are sensitive to small vari-
ations of displacement, and are capable of atomic-scale
imaging of surfaces.

PARAMETRIC AMPLIFICATION

It can be shown that for the purposes of parametric
amplification, a time-varying reactance is equivalent to
a nonlinear reactance [2]. Manley and Rowe provide
the framework for understanding the power flow relation-
ships when using a system with such a reactance. They
provide criteria for determining whether or not power
gain is possible and what the maximum gain may be un-
der ideal circumstances.

Figure 1 shows the generalized system that Manley
and Rowe analyzed. Note, there are two input signals
at frequencies fa and fb. There are also bandpass fil-
ters and associated resistances at those frequencies, de-
signed to reject power not within the bandpass (i.e. they
do not resistively dissipate the energy of unwanted fre-
quencies). In addition to these inputs and the reactance
(shown here as a time-dependent capacitor), there is an
infinite array of load resistances and associated bandpass
filters attached to the system. The frequencies of these
additional filter/load pairs are located at all of the sums
and differences of the two input frequencies. The sym-
bolic convention we will use is fm,n, where the first sub-
script is the number m times fa, and the second subscript
is the number n timesfb. This means that f1,0 = fa and
f1,2 = fa + 2× fb.

The sign convention we will use is that power flow-
ing into the reactance (from the sources) is positive, and
power flowing from the reactance (into the loads) is nega-
tive. If we were to remove all but the f1,1 load, this would
reduce the Manley-Rowe equations to:
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In words, we are supplying P1,0 and P0,1 to the re-
actance from the input sources. This means P1,1 must be
negative and power flows from the reactance into the load
at f1,1. We define the power gain, gm,n, of this system:

g1,0 =
−P1,1
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=

f1,1

f1,0
and g0,1 =
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(2)

This particular system is called an up-converter (also
called a non-inverting amplifier). We can work out the
same set of equations for any similar system. The gain
calculated by this method is the maximum theoretical
gain achievable in any particular configuration. In reality
the gain is limited by unaccounted for reactances, resis-
tive losses, imperfect filters, and imperfect mixing.

Design of a MEMS Parametric Amplifier

Experimentally, we have determined that the Q of a
SCREAM device is on the order of 1000 at a pressure
of 3 mT. A Q of about 1000 is sufficient for proof-of-
concept parametric amplifiers. We would, however, gain
by increasing the Q of our resonators.

A high resonant frequency for the output filter allows
for larger gains (due to Equation 2) at the cost of ei-
ther significantly reduced mass or dramatically increased
spring constant. A high spring constant is unacceptable,
as it will restrict the maximum displacement available,
which makes displacement detection more difficult. Too
small of a mass is also a problem.

We will use a double-folded design for our springs and
comb drives for our sensors and actuators. We still need a
time-dependent reactance to make our system complete.
Using the work done [3], we will need to add a time-
dependent term to either the zeroth or the second order
terms of the MEMS’s equation of motion. Since we can-
not fabricate a simple time-dependent mass using MEMS
techniques, we use a variable stiffness:

mẍ + cẋ + (k + kelectrical)x = Fexcite(Ve) (3)

where m is the lumped mass of our system, x is the dis-
placement, c is the damping coefficient, k is the lumped
mechanical stiffness of our springs, kelectrical is the
lumped electrostatic stiffness, and Fexcite(Ve) is the ex-
citation force on the system as a whole. Here, the exci-
tation force is applied by one of the comb drives. If we
consider a parallel plate drive for the electrostatic stiff-
ness (see [3]),and perform a Taylor expansion about the
stable point, x��, we find the electrostatic stiffness:

kelectrical = − ε0AV 2
t

(d− x��)3
(4)

where A is the area of the plates, Vt is the voltage applied
across the plates, and d is the initial gap between plates.

Our device has a resonant frequency of approximately
6 kHz. The device has 132 fingers in the signal bank of
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Figure 2: Overview of our device, as viewed from an op-
tical microscope.

comb drives, 198 fingers each on the sense banks of comb
drives, all with an initial gap of 3.5 µm. The springs are
250 µm long and 1 µm wide. The 8 parallel plate drives
are each 300 µm long at an initial separation of 4 µm. The
measured depth of this device is 30.7 µm which makes
the total parallel plate area 73680 µm2. The design, as
tested in the next section, is shown in Figure 2.

Measurements of a Parametric Amplifier

To demonstrate a working MEMS parametric amplifier,
we must show three things: that the Manley-Rowe equa-
tions hold, that our system has gain, and that the output
amplitude is linearly related to the input amplitude. The
most direct method of demonstrating that the Manley-
Rowe power relationships hold is to plot the gain versus
the ratio of frequencies. From the discussion above, the
gain is proportional to the ratio of frequencies.

It is impractical to attempt this measurement directly,
as our system has a Q of about 1000. Any attempt to char-
acterize the gain vs. the ratio of the frequencies would
only be applicable over a very small frequency range un-
less we deconvolve it from the bandpass behavior of the
mechanical device. We will bypass the issue of band-
pass filtering and perform this measurement away from
resonance. Thus, our system would look like the one in
Figure 1 wherein all of the harmonics are present across
the time-varying reactance. This leads to the undesirable
consequence of negative gain (i.e. attenuation) due to
the power being distributed among the other harmonics.
Nonetheless, we still observe the behavior expected of the
Manley-Rowe equations, as seen in Figure 3.

As there is attenuation, we have normalized the mea-
sured behavior to the theoretical, which is simply a plot
of f−1,1

f1,0
versus f1,0. We have found this frequency de-

pendent gain to occur over a wide parameter space.
Figure 4 shows gain over a limited parameter space.
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Figure 3: Gain vs. the ratio of frequencies, f0,1 = 5 kHz
at five voltages, f1,0 = 20 Hz to 350 Hz.
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Figure 4: Large gain vs. the ratio of frequencies,
f0,1 = 5.7 kHz from 4 to 8 V, with a DC offset of 3 V,
f1,0 = 0 Hz to 100 Hz at 10 V p-p.

The theoretical curve in Figure 4 is normalized to the
maximum gain of 316.2. Figure 5 shows that the gain is
constant regardless of the input signal amplitude at sev-
eral input frequencies.

ATOMIC FORCE SENSING WITH

PARAMETRIC AMPLIFICATION

In this section we will integrate the parametric ampli-
fier with a MEMS-based sensor.

The device used in this section is described fully in
Chapter 2 of [4]. It is a parametric amplifier, similar to the
design in the previous section, coupled via a mechanical
spring to an atomic-scale force sensor (AFM).

The frequency of our sensor shifts due to the van der
Waals force as a strong function of interaction distance.
If we were to rigidly attach the parametric amplifier to
the AFM, then there would be energy fed back into the
sensor. This would produce a closed loop wherein the
very act of amplification would change the measurement.

We therefore move our amplifier to a separate res-
onator with a higher resonant frequency than the AFM
sensor structure. The sensor structure is loosely cou-
pled to the amplifier structure with a mechanical cou-
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Figure 5: Gain vs. input amplitude, f1,0 at 5 frequencies
from 5 to 10 V p-p, f0,1 is 8 V p-p at 10 kHz.

Figure 6: Characterization of combined AFM/paramp
device. The tip is driven by a pseudo-random signal at
5 V between 1 and 3 kHz.

pling spring. Here, the low frequency AFM measurement
transfers power efficiently to the parametric amplifier, but
the high frequency pump and output signals will not be
transferred back to the sensor.

As discussed above we selected a resonant frequency
of about 6 kHz for the amplifier portion of the system.
The resonant frequency for the sensor portion of the sys-
tem is approximately 3 kHz.

Results/Discussion
Figure 6 shows the behavior of the AFM tip interacting
with the sample without the benefit of parametric ampli-
fication. The 2496 Hz peak is the resonant frequency of
the AFM structure when it is not interacting with the sam-
ple. When the sample approach actuator is at 10.63 V
(113 V2), the tip enters a bi-stable state between inter-
acting and not interacting. At higher sample approach
voltages (i.e. when the tip is closer to the sample), the
tip is interacting with the sample and we observe a fre-
quency shifting behavior characteristic of these sorts of
systems. When the sample approach voltage is about
18.4 V (339 V2), the tip and sample come into contact.

Once we apply the pump to the amplifier, things start
getting interesting. Figure 7 shows the resulting behavior.
Note how the pull-in behavior of the tip is mixed to a



Figure 7: Parametrically amplified AFM measurement.
The conditions are the same as in Figure 6 except the
parallel plate actuators are driven at 3 V p-p at 5976 Hz
with a 1.5 V DC offset.
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Figure 8: Cross-section of Figure 7 showing the fre-
quency response at the point of highest gain. The sample
approach voltage is 10.8 V (117 V2).

variety of frequencies. Also note that the mixed signals
near the resonant frequency of the amplifier mass have
the highest amplitudes.

Figure 8 shows a “cross-section” (i.e. the frequency
response) of Figure 7 at the point of highest gain. Here,
we see that the amplitude of the input signal from the tip
mass is -28.1 dBV at 2898 Hz and the output signal is
-17.65 dBV at 6145 Hz giving us a gain of 10.45 dB.

If we increase the pumping to 7 V with a 3.5 V DC
offset and reduce its frequency to 5500 Hz, we get a gain
of 47.75 dB, well over two orders of magnitude stronger.

The noise floor of the system during sample approach
under non-amplified conditions is about -87 dBV (from
Figure 6). This means we have increased our signal-to-
noise ratio from roughly 33:1 to 2867:1, so we can dras-
tically reduce our pseudo-random tip driving signal or
even eliminate it altogether and rely on thermomechan-
ical noise to generate the resonance peak at the tip.

CONCLUSION

We have presented an electromechanical parametric
amplifier with built-in displacement detection and band-

pass filtering where the time-varying component is an
electrostatic spring constant. Although prior work has
been performed using one or more of these characteris-
tics, there is no record of any such system incorporating
all of them or with nearly as much gain [5], and [6]. One
group has built a degenerate parametrically amplified mi-
crocantilever, with a gain of slightly less than 20 dB and a
non-degenerate gain of 1 dB [7]. Another group has built
a parametrically amplified membrane (a MEMS tuned ca-
pacitor), with an up-converter gain of 6 dB [8].

We have also presented an atomic-scale force sensor
and attached it to another electromechanical paramet-
ric amplifier. The gain of this parametrically amplified
atomic force measurement is 47.75 dB. Since this sort of
parametric amplification is purely mechanical, we could
attach it to just about any other MEMS sensor to provide
on-chip pre-amplification.

Also, since the signal is amplified without the use of
transistors, this gives us the flexibility of choosing a
MEMS fabrication process that is not limited by the re-
quirements of VLSI technology.
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[7] A. Dâna, F. Ho, Y. Yamamoto, “Mechanical Paramet-
ric Amplification in Piezoresistive Gallium Arsenide
Microcantilevers”, Applied Physics Letters, Vol. 72,
No. 10, pp 1152-1154, March 1998.

[8] J.-P. Raskin, et al, “A Novel Parametric-Effect
MEMS Amplifier”, Journal of Microelectromechan-
ical Systems, Vol. 9, No. 4, pp 528-537, Dec. 2000.


