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A functional MEMS-based parametric amplifier is described. This system am-

plifies the output of a MEMS-based atomic-scale force microscope (AFM) tip. The

components are individually characterized and then integrated to form a complete

system. The parametric amplifier provides a power gain of 316.2 or 49.9 dB. The

frequency of the atomic-scale force sensor changes by 62.4% when the tip is almost

in contact with the sample.

This parametric amplifier system follows the behavior predicted by the Manley-

Rowe theory, which establishes that the gain is proportional to the ratio of the

input frequency to the output frequency. The power gain of our amplifier is also

linear with regards to the input amplitude.

The force microscope provides a shift in its resonant frequency as the gap

between the tip and the sample is reduced. The atomic-scale force acting on

the MEMS tip cause the frequency shift. The behavior of this frequency shift

varies with the shape of the tip and the type of material present on the tip. We

have also operated our MEMS as a scanning capacitance microscope, detecting

the electrostatic field between the tip and the sample. The system provides a

one-dimensional scan of a sample surface.

The complete system, the tip with integrated parametric amplifier, generates



amplification of an AFM measurement at a gain of 244 or 47.7 dB with an increased

signal-to-noise ratio.
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Chapter 1

Introduction

The technique of parametric amplification has a long and interesting history in

the field of Electrical Engineering. The purpose of this thesis is to present a novel

application of parametric amplification using a Micro-ElectroMechanical System

(MEMS). The application we describe and analyze is that of amplifying the output

signal of an Atomic Force Microscope (AFM).

A parametric amplifier uses a nonlinear or time-varying component in an other-

wise linear system to produce power gain for an input signal. There are two inputs,

the signal to be amplified and a pump signal. The nonlinear component acts as a

frequency mixer which creates all of the harmonics of the two input frequencies. If

we filter out all of the harmonics except for one (the output frequency), the pow-

ers from the input signal and the pump signal will be transferred to this output

frequency to achieve net power gain.

An AFM is a device which detects the atomic-scale forces including the van

der Waals (vdW) forces between two bodies. AFM systems are sensitive to small

variations of displacement, and are capable of atomic-scale imaging of surfaces.

Atomic microscopy is of great interest due to its ability to image surfaces previously
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beyond the reach of scientists and its use to solve novel commercial applications.

The purpose of this work is to demonstrate a scheme whereby a MEMS is used

to pre-amplify the output of a MEMS sensor (an atomic-scale force detector). The

scope of the work is therefore limited to the characterization of each component

in the system and a demonstration of amplifying a signal from our sensor with an

increased signal-to-noise ratio over the unamplified signal. By “characterizations”,

we mean that we demonstrate that the components (and thus the whole system)

obey the qualitative behavior described by theory.

It should be noted that all of the measurements presented in this work are

repeatable. In all cases, the data presented have been averaged over several mea-

surements, typically at least 50. Often, we have had to repeat an experiment and

found the results to be almost identical even after several months.

The astute reader may notice a recurring theme throughout this thesis, namely

that of coupled modes. Chapter 2 discusses the by-product of coupled charges

(resulting in van der Waals forces). We use a MEMS to study the change in

resonant frequency due to these forces. Chapter 3 covers an uncommon amplifica-

tion scheme, parametric amplification, which derives power gain through coupled

modes in a nonlinear reactance. Chapter 4 presents some of the deleterious effects

of electromagnetic and mechanical coupling which induce noise and error into the

system. And finally, Chapter 5 describes the integration of the AFM and para-

metric amplifier systems with a traditional mechanical coupling spring. Chapter 6

outlines some ideas for future work utilizing the designs and results presented here.

Appendix A discusses the SCREAM fabrication process used to build the devices

described in this work. Appendix B describes the rationale and construction of

our experimental environment.



Chapter 2

Atomic Force Microscopy

We begin this chapter with an introduction to Atomic Force Microscopy (AFM),

comprehensive enough for us to understand the issues involved in building a

MEMS-based AFM. Once we outline the issues, we discuss the design and im-

plementation of our AFM system. Finally, we demonstrate a working AFM.

The Atomic Force Microscope (AFM) was introduced in 1986 by [Binnig 1].

An AFM is a device that senses atomic-scale forces between a sharp tip and a

sample. The first AFM was based on the work done by [Tabor] and [Israelachvili 1],

wherein they measured the van der Waals (vdW) forces between two cylindrical

pieces of mica in the late 1960s and early 1970s. These early systems used optical

interferometry to detect displacement. The first AFM system used a Scanning

Tunneling Microscope (STM) for displacement detection, building on the earlier

work done by [Binnig 2]. Since the introduction of the first AFM, there has been

an enormous variety of experiments performed using a wide variety of system

components and applications.

3
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2.1 Background Information

The AFM is a subset of a group of tools referred to as Scanning Force Microscopy

(SFM). Other SFM systems are the Scanning Capacitance Microscope (which de-

tects electrostatic forces) and Magnetic Force Microscope (which detects electro-

magnetic forces). There exist two modes of AFM operation, a contact mode and a

non-contact mode. In the contact mode, the AFM senses repulsive atomic forces

up to a few Ångstroms. Non-contact mode senses the attractive vdW forces from

a few Ångstroms to several hundred Ångstroms. One downside of this mode of

operation is that it is not possible to achieve atomic resolution. The devices pre-

sented in this work only attempt to detect forces in non-contact mode, using the

attractive vdW forces.

For more information on AFM systems and atomic-scale forces, we recommend

[Hartmann], [Meyer], and [Israelachvili 2].

2.1.1 van der Waals Forces

The essential feature of an AFM is the atomic-scale force between the sensing tip

and the sample. The vdW equations were derived over 100 years ago to describe the

behavior of imperfect gas molecules interacting with each other. This interaction

is due to the electrostatic dipoles between atoms and non-polar molecules from

an instantaneous fluctuation in their electron density. This force is almost always

attractive.

The vdW forces are typically very small. At small separations, the vdW forces

may be very large, but are typically weaker than the chemical binding forces. At

large separations, the vdW forces are weaker than electrostatic forces. In the
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absence of electrostatic, magnetic, capillary and chemical bonding forces, vdW

forces are the sole attractive force between dipoles.

The well-known London equation describes the interaction energy of two inter-

acting neutral molecules, neither of which has a permanent electric moment:

E = − 3α1α2I1I2

2r6(I1 + I2)
(2.1)

where α1 and α2 are the atomic polarizabilities of the two molecules, I1 and I2 are

the molecules’ first ionization energies, and r is the distance between the molecules.

The information between the two molecules travels at the speed of light. Once the

molecules are separated by a distance greater than a characteristic wavelength

they enter a relativistically retarded interaction state. The London equation only

applies where the separation is much less than the characteristic wavelength. The

Casimir and Polder equation [Casimir] applies when the separation is much greater

than this wavelength:

E = −23h̄cα10α20

4πr7
(2.2)

where α10 and α20 are the static atomic polarizabilities, c is the speed of light and h̄

is Planck’s constant. There is a transition region between the London behavior and

the Casimir and Polder behavior. The range of displacements over which the forces

transition between these two behaviors depends on the particular molecules under

consideration. For mica it has been experimentally shown [Israelachvili 1] that

this transition region asymptotically approaches the r−6 behavior at separations

approaching 10 nm and asymptotically approaches the r−7 behavior at separations

of approximately 80 nm.

For macroscopic bodies, this potential energy between the two bodies may

be computed by adding the vdW forces between every pair of molecules in each
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body. The total vdW force between any two bodies at any separation can be

calculated given enough compute time to add up every interaction between any

two molecules of the macroscopic bodies. As this is impractical, most researchers

resort to experimental exploration of vdW forces.

2.1.2 Factors that Might Affect Measured vdW Forces

It should be apparent that any practical implementation of a system which mea-

sures vdW forces would involve a host of issues that might affect the measurement.

As mentioned above, chemical and electrostatic forces are greater than the vdW

forces in almost all situations. If our system has such forces, we might still be able

to extract the vdW forces. In particular, electrostatic forces obey different power

laws for the relationship between force and displacement. If we measure the force

over a range of displacements and discover a r−7 component, there is a very high

probability that this is due to vdW forces.

There are other factors that may influence our measurements, such as capillary

forces, adsorbates, tip shape, and measurement errors (see Sections 4.2 and 4.3).

Capillary forces and adsorbates arise from the presence of other materials in our

system. For example, if we intend to study aluminum/aluminum interactions and

some amount of carbon is present on the interacting surfaces, we will measure the

carbon/carbon interaction forces. If a water droplet comes in contact with both

surfaces, then capillary forces exist between the bodies in addition to the vdW

forces. Exacerbating the issue is that the surface energies of water droplets tend

to favor sharply curving surfaces such as an atomically sharp tip. This issue often

makes it very difficult to exactly determine what materials are interacting in a

particular system. In particular, [Hartwell] has noted the difficulty involved in
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matching the measured work function of a microfabricated STM tip with the work

functions of the materials present in the system.

The shape of the tip greatly affects the measured vdW forces. Recall from

Equation 2.2 that the interaction force is related as r−7. This means that any sur-

face roughness on either the tip or the sample will possibly influence the measured

result. This is actually to our advantage in simplifying the fabrication process

necessary for the measurements (refer to Section 2.2).

2.1.3 Force Gradient

As the reader may have guessed, the displacement-dependent forces lead to a force

gradient between the tip and the sample. This force gradient is a composite of all

of the forces acting on the tip and the sample, and the only practical method of

separating them is by their characteristic force vs. displacement relationships.

One method of sensing this force gradient is by placing the tip or the sample

on a cantilever and approaching the tip to the sample. If the sample is on a

cantilever and the tip is rigidly attached, then as the gap between the sample and

tip is reduced, the sample will be attracted to the tip. Thus, we can observe the

displacement of the sample, as its displacement is entirely due to the force gradient.

Our experiments were performed with the tip being cantilevered and approaching

the sample. In this situation, we must be able to separate the actuator induced

tip displacement from the force gradient induced displacement. The force gradient

tends to reduce the effective spring constant of the MEMS; this subject is discussed

further in Section 2.3.1.

Another detection technique is to observe the shift in resonant frequency of

the cantilever. As discussed in Chapter 3.2 of [Adams], applying an additional
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nonlinear force to a spring-mass system will act to tune the frequency of the system.

Thus, our equation of motion becomes:

mẍ + cẋ + kmechanicalx − FvdW (x) = Fexcite(Ve) (2.3)

were m is the lumped mass of our system, x is the displacement, c is the damping

coefficient, kmechanical is the lumped mechanical stiffness of our springs, FvdW (x) is

the lumped force gradient, and Fexcite(Ve) is the excitation force on the system as

a whole. In our system, the excitation force is applied by one of the comb drives.

This gives us a resonant frequency of:

f ∝
√√√√ 1

m

(
k − ∂FvdW

∂x
(x)

)
(2.4)

Assuming the force gradient is of equivalent magnitude as the restoring force of the

cantilever spring, the resonant frequency of our system shifts as the tip approaches

the sample. Since the force gradient is attractive, the total effective spring con-

stant of the system is reduced. If the force gradient is greater than the restoring

force of the spring, an instability can occur where the tip enters a bistable state.

Traditionally, the tip is excited by the thermal and mechanical noise of the system

(see Section 4.4). In our experiments, the thermal and mechanical noise do not

provide a large enough signal for repeatable measurements, so we must artificially

excite the system. We use a pseudo-random noise generator (HP 89410A Vector

Signal Analyzer), as described in Section 2.3.3.

2.2 Design of a MEMS AFM

Once we have selected a particular fabrication technique (the SCREAM process,

see Appendix A) and a particular displacement detection technique (laser interfer-

ometry, see Appendix B), we find ourselves with some initial conditions we must
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satisfy. Figure 2.1 shows a schematic overview of the system (as attached to the

interferometer and a capacitive detection circuit). The part of the system that

moves has a minimum mass (for the actuators to move the system far enough for

detection) and a minimum mechanical spring constant (due to the limitations of

the SCREAM process — very compliant springs tend to bow out of plane).

It is highly desirable to have a very low spring constant (so that the vdW

forces will induce maximum displacement for a given force) and a high resonant

frequency, so that ambient noise and vacuum pump noise have little effect. The

spring constant and resonant frequency are related as:

f =
1

2π

√
k

m
(2.5)

where f is the resonant frequency, k is the lumped spring constant, and m is the

lumped mass. Thus, we need to scale the mass as we reduce the spring constant

to retain a high resonant frequency. We are not always able to provide an optimal

solution here, as other factors come into play limiting the minimum mass of our

system.

For our design, we use comb drive actuators [Tang]. The important property

of these devices is that the force they induce is independent of the displacement of

the actuator. This property allows us to design devices that can easily be modeled

due to their linear nature. The relevant equation is:

F (V ) =
nε0V

2h

d
(2.6)

where n is the number of comb fingers, h is the height of the fingers, V is the

voltage applied between fingers, and d is the gap between fingers. These devices

have a fixed mass overhead due to their construction using the SCREAM process
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Figure 2.1: Schematic overview of the AFM system design. A laser interferometer

and a capacitive displacement sensing circuit can simultaneously detect the dis-

placement of this system. See Sections 4.2 and 4.3 and Appendix B for a discussion

of the measurement techniques.
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and requirements on stability and rigidity. Note that the force is proportional to

the square of the applied voltage.

The spring design is a double-folded spring construct, which allows for some

expansion during processing without affecting the stability of the springs, and

reducing the likelihood of stress-induced buckling. There is an upper limit on the

length of the springs we can build due to the composite nature of the springs

and the uniformity of the thin film deposition. Although there are methods of

producing lower spring constants than the double-folded design, none are as good at

combining all of the properties of efficient mass usage, efficient chip area, stability,

and linearity over large displacements.

Taking all of these factors into consideration, we built and tested a variety of

devices. The first set of devices (of the “ma” design) are simple structures with

a tip approaching a fixed sample. These devices have four sets of double-folded

springs, a bank of comb actuators to induce pseudo-random noise, a bank of comb

actuators to approach the tip to the sample, and two banks of comb sensors for

use with a capacitive detection circuit. These devices have a resonant frequency

of about 3.2 kHz. Figure 2.2 shows an overview of a device from the same wafer

as the device we characterized.

The other design we tested (the “es” devices) is quite a bit more complex, as we

had intended to use this for the experiments presented in Chapter 5. Additionally,

this design is capable of scanning the tip along the sample. Figure 2.3 is a schematic

overview of an “es” die. There are four slightly different devices surrounding an

XY actuator, each with slightly different spring constants. Figure 2.4 shows an

overview of one of the “es” design devices from the same wafer as the devices tested

in this chapter. We will not discuss the back end of these devices (the capacitive
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Figure 2.2: Overview of a ma2 device, as viewed from an optical microscope.

From left to right: sample, tip, folded springs, mass, actuator for pseudo-random

noise, actuators for approaching tip to sample, two sense banks, and matching

folded springs. Surrounding the device are the electrical traces and contact pads,

including ground traces and pads between critical signal paths.
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Figure 2.3: Schematic overview of an “es” die. The large XY stage is the sample

to be detected. There are actuators on this XY stage which move it along two

axes, which serve to approach the sample to the tip and to scan the sample in one

dimension along the tip. Only one device is shown in this schematic. Here, the y-

actuator is used to approach the sample to the tip. Either the x+ or x- actuator

is used to scan along the tip. There are intentional bumps on the sample. These

bumps are drawn as 0.5 µm by 0.5 µm in CAD.
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Figure 2.4: Overview of a es4 device, as viewed from an optical microscope. From

left to right: XY stage, tip, tip structure folded springs, tip structure mass, tip

structure actuators for pseudo-random noise, coupling springs between tip struc-

ture and sense mass, folded springs to anchor the sense mass to the substrate,

parallel plate drives, two banks of combs for sensing, and matching folded springs.

At the lower right of this image is one of the XY actuators. Surrounding the de-

vice are the electrical traces and contact pads, including ground traces and pads

between critical signal paths.



15

sensors and parallel plate drives) until Chapter 5. The front end has a tip and a tip

actuator (to apply a pseudo-random signal). This structure is anchored by folded

springs, and has a mechanical coupling spring to the back end. These devices

have resonant frequencies of about 2.5 kHz. The frequencies are different for each

device, as each has a different design spring.

Both of these designs have resonant frequencies significantly higher than the

ambient noise sources. As mentioned in Section 2.1.3, in some of our experiments,

we will be measuring the shift in resonant frequency. To make our measurements

of resonant frequency as accurate as possible, we desire a high quality factor (Q).

The Q of our SCREAM fabricated devices is approximately 1000 under a vacuum

of about 3 mT. Another advantage of performing our experiments under vacuum is

that we have a known dielectric between the tip and the sample (i.e. vacuum). As

we often performed our experiments after the system had been at 3 mT for several

days, the likelihood of a droplet of water remaining on the wedge is minimal, thus

reducing the potential for capillary forces influencing our measurements.

The tip we will use is not actually a tip, but is instead a wedge, as shown in

Figure 2.5. Note how the top of the wedge is closer to the sample by about 40 nm.

This means that at a separation of about 100 nm, the mass in the lower portion of

the wedge has 1007

1407 ≈ 9.5% per unit area of the interaction force as one unit area

on the tip. As the tip gets closer to the sample, this difference becomes greater

and the near portion of the tip interacts more strongly with the sample than the

rest of the wedge. At a separation of 50 nm, the majority of the wedge has only

1.6% per unit area of the interaction force that the projecting portion has. Thus,

we can reasonably expect that with small enough separations, a wedge design is

sufficient to provide a well-characterized vdW force, without resorting to intricate
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Figure 2.5: FIB image of the AFM wedge on es62334. Note the intentional ripples

on the sample. These are discussed in Section 2.3.7.
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fabrication processes that produce atomically sharp tips. See Chapter 2 of [Reed]

for a description of the SPLEEN process.

The disadvantage of using a wedge instead of an atomically sharp tip is that

very slight process changes produce wedges with differing behaviors due to differing

shapes. We found that devices on the same wafer did not display exactly the same

behavior.

2.3 Results and Discussion

2.3.1 Demonstration of Static Tip Approach

As mentioned in Section 2.1.3, there are two common techniques for detecting

the force gradient due to atomic-scale forces. First, we demonstrate the static

technique, where the system is at equilibrium at all times during the measurement.

Equation 2.6 shows that the force applied by the comb actuator is proportional

to the square of the applied voltage. Thus, the displacement should be linear

when plotted against the square of the applied voltage if no other forces act on

the system except the linear restoring force of the springs. Figure 2.6 is the raw

data acquired from the interferometer system as we approach the sample to the

tip. This is an “es” device, so the tip moves as well. This displacement is shown in

Figure 2.7. When the gap is reduced (by approaching the sample to the tip), the

tip does not move until the attractive force from the sample is greater than the

tip’s restoring springs. This occurs after the sample has moved by about 1.2 µm.

When the applied voltage is ramped down to zero again, the tip snaps back to an

undisplaced position at roughly the same point.

Even though these two measurements are taken at different times (since the in-
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Figure 2.6: Displacement vs. V2 measurement of sample approaching and retract-

ing from the es62334 tip. Each trace has been averaged over 100 times.
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Figure 2.7: Displacement vs. V2 measurement of sample approaching and retract-

ing from the es62334 tip, measuring the tip’s displacement only. Averaged over

100 times.
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terferometer only measures one displacement at a time), the data can be combined.

During the measurement, we cleared the displacement counter of the interferome-

ter at the zero-crossing for both measurements, to create a reference point. When

we sum the two displacement measurements, we have an estimate of the tip/sample

gap for a particular actuator voltage, as shown in Figure 2.8.
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Figure 2.8: Total displacement vs. V2 measurement of sample approaching es62334

tip. The dotted trace is the data from Figure 2.6, for comparison.

The data in the previous figures were gathered at a driving voltage slightly less

than that required to trigger an instability. When the gap is reduced only a few

tens of nanometers more, the atomic-scale forces are stronger than the restoring

force of the mechanical springs and the tip and sample snap together. This is

demonstrated in Figure 2.9.

Using the data presented in this section, one could conceivably extract the force

versus gap relationship. Our displacement measuring system has large systematic

errors in addition to random fluctuations on the order of the displacements we are
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Figure 2.9: Displacement vs. V2 measurement of sample approaching es62334 tip.

At an actuator voltage of 18.9 V (357 V2), the tip and sample repeatably snap

closed. When the actuator voltage is reduced to about 13.1 V (172 V2), the

restoring force of the mechanical spring dominates. Averaged over 100 times.
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trying to detect. See Section 4.2 for a discussion of the errors and noise present in

our interferometer system.

2.3.2 Interpreting the Dynamic Data

Considering the doubts we have about the accuracy of the interferometer with

quasi-DC measurements, we will base the remainder of our measurements on the

shift of the resonant frequency due to the atomic-scale forces.

One of the interesting challenges at this stage is to interpret the raw data

acquired from the spectrum analyzer. In this section we present a walkthrough

of this process. We start by collecting all of the data and loading it into Matlab.

Using Matlab, we present the data in a visual format, such as Figure 2.10.

Figure 2.10: Raw data visualization. The es62334 tip is excited by a 5 V pseudo-

random signal. The sample actuator is ramped from 16 V to 19.5 V, approaching

the sample to the tip. Each of the 100 steps is an equal division from (19.5)2−(16)2.
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One immediately notices that there’s a lot going on in this system. The hori-

zontal and vertical axes represent the data acquired by the spectrum analyzer (in

Hz and dBV), displaying the amplitude of displacement of our device at specific

frequencies. The y-axis represents the independent variable, which is the sample

approaching the tip. That is, all of the data at each step are the results of one mea-

surement of the frequency response of our system when the sample and tip have

a fixed gap. For interferometer measurements, -3 dBV corresponds with a 1 µm

peak-to-peak displacement and -63 dBV corresponds to a 1 nm p-p displacement.

We only show the data from 16.5 V to 19 V since the behavior of the system

remains unchanged outside of this range. Below 16.5 V, the tip and sample aren’t

interacting and the tip always has a resonant frequency of 2.54 kHz. Above 19 V,

the tip and sample are in contact and nothing exciting happens. Note how the

frequency response of our system displays second-order behavior at step 0. At

about step 45, the proximity of the sample to the tip begins to shift the resonant

frequency. At step 86, the tip is in contact with the sample. If we rotate this data

such that we do not have an independent axis for the displacement and rely only

on the shading to observe the displacement, the data looks like Figure 2.11

From this angle, we lose insight as to the shape of each frequency response

curve, but gain a better view of how the resonant frequency shifts. For the most

part, we can do without most of this data. If we present only the maximum

amplitude of the frequency response at each step, we arrive at Figure 2.12.

Note that our earlier estimate of when the tip and sample begin to interact

was incorrect. Now, it is apparent that the tip and sample begin interacting at

about step 25, not step 45. The maximum at about 4 kHz is irrelevant, as the tip
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Figure 2.11: Data from Figure 2.10 rotated to show only step and frequency.

Amplitude is displayed only as shading.
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Figure 2.12: Data extracted from Figure 2.11. Only the maximum amplitude at

each step is shown here.
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and sample are in contact at this point, and our detection scheme isn’t accurate

enough for contact AFM measurements.

2.3.3 Discussion of Tip Approach/Frequency Shift

Note how the frequency shifts as the gap decreases in Figure 2.12. We have found

this behavior to be only somewhat repeatable. The behavior at large tip/sample

gaps is repeatable. Once the gap is reduced, the behavior follows the same general

trend, however the exact frequency at a particular sample actuator voltage varies.

We suspect this is due to the pseudo-random nature of the driving signal on the

tip and the possibility of large displacement spikes. Although we might be able

to reduce the amplitude of the tip pseudo-random signal, we would also greatly

reduce the signal-to-noise ratio of the displacement measurement.

While we would like to plot our data as a function of tip/sample gap, this

has turned out to be a rather difficult with the current design. We are unable to

measure more than one displacement at a time with our interferometer system (we

would need to detect the tip displacement as well as the sample displacement since

both move in this design). More importantly, the indeterminate pull-in voltage for

the sample actuator makes it difficult for us to calibrate our measurements as a

relationship of tip/sample gap.

Ultimately, we end up with a compromised situation, where we plot our data

as a function of the square of the actuator voltage. This will make all V2 behavior

immediately apparent in addition to providing more data points in the region of

rapid change near pull-in.

We would like to determine exactly which of the atomic-scale forces contribute

to the frequency shift we are observing. In the next two sections, we vary parame-
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ters that might cause one of these forces to dominate. This will demonstrate that

each contributes to the frequency shift in a unique fashion.

Unfortunately, we are unable to detect the presence of fluids at the tip/sample

interface, so we cannot discover how much of an influence capillary forces have on

our system. At present, we can merely assume that the pressure of the system is low

enough that whatever fluids may have been present have evaporated. Construction

of a vacuum chamber capable of being heated would allow us to evaporate the

remaining fluid.

2.3.4 Electrostatic Forces Between Tip and Sample

The most obvious suspected contributor to the detected force gradient is an applied

bias between the tip and the sample. This will be present due to the geometry and

electrical layout of our system. All of our experiments involve high voltages present

in the suspended wirebonds somewhere near the tip and the sample. Additionally,

we have high voltages applied on the comb actuators near the tip. The equation

of motion of our system (Equation 2.3) is modified by the presence of an applied

bias between the tip and the sample:

mẍ + cẋ + kmechanicalx − FvdW (x) − Fbias(x, Vbias) = Fexcite(Ve) (2.7)

where the additional Fbias term represents the force due to the presence of an

electrostatic potential between the tip and the sample.

We need a well-defined environment in which to determine how large of an

effect Fbias has on the system. Our design allows us to either leave the tip and

sample electrically connected or to apply a known bias between them. There are

fuses connecting the tip to the sample that we can mechanically break when we
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wish to apply a bias on the sample. See Figure 2.13 for a schematic of how we

construct these fuses.

As is apparent (and expected) in Figure 2.14, the resonant frequency is highly

dependent on the applied bias between the tip and the sample. For this device,

the tip is initially within the interaction range of the sample in an unactuated

state, indicated by the initial slope at y = 0 V when the device is unactuated. If

the tip were outside the interaction range of the force gradient, the data would be

unaffected by the initial approach, as seen in Figure 2.11.

The extent to which the applied bias affects the force gradient is rather unfortu-

nate. This confirms that voltages induced in the sample due to nearby wirebonds

and actuators affect the system, making analysis more difficult. The artificially

induced bias on the sample is significantly larger than any possible bias induced

by nearby wirebonds and actuators, thus these data are a worst-case scenario for a

vdW sensing system. This bias-induced frequency shift is not all bad, as it lays the

groundwork for future work on a MEMS-based Scanning Capacitance Microscope.

2.3.5 Changing the Metal Type

One of the important parameters we can change is the material composition of the

tip and the sample. Unless otherwise specified, all of the measurements are per-

formed where the interacting materials are aluminum and its native oxide (Al2O3).

There are two approaches we considered to change the tip material. The first was

to remove the layer of aluminum and expose the silicon oxide underneath using a

Micrion 2500 Focused Ion Beam (FIB) system. It turns out that the FIB is too

aggressive to leave the tip or sample in the same shape (see Section 2.3.6). We

must, therefore resort to depositing another film on top of the aluminum. Gold and
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Figure 2.13: Schematic of design used for applying a bias to the sample. The fuses

can be mechanically broken using a probe-station or a Focused Ion Beam system.

The normal configuration electrically connects the tip to the sample by the shortest

path possible. When the fuses are broken, there is no electrical connection between

the two.
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Figure 2.14: Detected force gradient as a function of bias with ma104222. Each

trace has a different bias between the tip and the sample.

palladium do not oxidize, can be deposited as very thin films (to retain the original

shape), and provide very strong vdW interaction forces. We therefore sputtered a

40 nm gold/palladium alloy on top of ma104222 and measured the force gradient.

Figure 2.15 demonstrates how the force gradient has shifted with the addition of

a thin layer of gold.

Note that this is the same device as tested in the previous section, and we are

thus able to apply a bias between the sample and the tip and directly compare

the measurements between an aluminum surface and a gold/palladium surface.

Irregardless of the bias, the frequency has shifted more with a surface of gold than

with aluminum (or its oxide). Figure 2.16 shows the frequency shift for ma104222

with gold and with aluminum (or its oxide) at three different tip/sample bias

voltages.
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Figure 2.15: Detected force gradient as a function of tip material on ma104222.

The solid trace is the tip coated with aluminum, the other trace is the tip coated

with gold.
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Figure 2.16: Detected force gradient as a function of tip material at different bias

voltages with ma104222. The solid traces are aluminum, the other traces are gold.
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2.3.6 Changing the Tip Shape

An interesting experiment involves reshaping the tip. Leaving the rest of the

system untouched, we used a FIB system to remove part of the tip. The shape of

the tip before milling is shown in Figure 2.5. The behavior is shown in Figures 2.6

through 2.12. The shape of the tip after milling is shown in Figure 2.17. The body

of the wedge is now over 100 nm from the leading edge.

Figure 2.17: FIB image of the AFM wedge on es62334 after reshaping.

We found that the FIB was too imprecise to actually change the shape of the tip
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(i.e. turn the CAD drawn trapezoid into a sharp triangular point). Nevertheless,

removing the bulk of the wedge was sufficient to observe a change in behavior, as

seen in Figure 2.18.

Figure 2.18: Pull-in behavior of es62334 tip after reshaping under almost the same

conditions as in Figure 2.11. The sample actuator is ramped from 17 V to 19.4 V.

The tip actuator is excited by a 5 V pseudo-random signal.

Note how the frequency immediately prior to contact (1778 Hz) is significantly

higher than for the unmodified tip (1698 Hz) by about 4.7%. Also note how the

behavior has changed, where there are two observed resonant peaks between steps

40 and 60. This illustrates the bistable nature of the system. Both equilibrium

points are available due to the pseudo-random nature of the tip driving signal,

which provides just enough energy to enter the other state. Obviously the non-

interacting state is preferred, as the averaged signal presented here is significantly

higher in amplitude.
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2.3.7 One-Dimensional Scan

Finally, we present a one-dimensional scan of the sample surface. When attempt-

ing this measurement, we found the least repeatable behavior among all of our

experiments. The measurements here did not seem correlated between the rough-

ness of the sample and the measured signal. The design we used is described in

Figure 2.3. We only present the data in Figure 2.19 to be thorough, as it is not

repeatable enough for any detailed discussion.

Figure 2.19: One dimensional scan of the sample of es62124. The XY scanning

actuator is ramped from 13 to 17 V. The XY sample approach actuator is held at

16.45 V. The tip actuator is excited by a 5 V pseudo-random signal.

The data represent a convolution of the tip shape with the surface roughness

of the sample. We did not attempt to deconvolve the data, since the tip shape is

not characterized to the required accuracy.
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2.4 Conclusion

We presented a MEMS-based SFM with integrated scanning capability. Although

prior work has been performed using MEMS fabricated tips, none has included

integrated scanning or detailed measurements [Albrecht], [Buser], [Blanc], and

[Neubauer].

The system presented here follows the behavior of a tip/sample system domi-

nated by vdW forces. We have eliminated most other sources of atomic-scale forces

(magnetic, chemical bonding, capillary, and repulsive vdW). We have also shown

that the remaining atomic-scale force (electrostatic) is not the only force present

in our system (as seen in Section 2.3.5). The data we present in this chapter is

fully repeatable, and we have measured these behaviors on several devices with

different designs and tip shapes. The only complete experiment which produced

non-repeatable data was the one-dimensional scan.

One of the main advantages of our approach is the high level of integration,

where the sensor, sample, and displacement detector are all fabricated concurrently,

from one material. Recall that early AFM systems were hand assembled and the tip

was manually attached to the cantilever with tweezers and an eyelash. Commercial

AFM systems now use tips with integrated displacement sensors.

The advantage of an integrated sample is that there is no alignment necessary.

Many AFM systems require a tedious, and time-consuming procedure of manual

coarse and fine alignment of the sample to the tip. By removing the alignment

step, we can perform a variety of experiments under identical conditions. We have

demonstrated reshaping the tip, depositing and removing materials, and a compar-

ison between SCM and AFM measurements. Commercial alignment manipulators

take several cubic centimeters of volume. Our typical integrated device less than
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one cubic millimeter.

The limitation, of course, is that we can only observe one sample per device.

We can reshape it and deposit new films on it, but we are still restricted in the

overall shape and materials to be probed. One must also keep in mind that the

changes made to the sample are irreversible.



Chapter 3

Parametric Amplification

In this chapter, we present a brief introduction to parametric amplification, suffi-

cient to understand the important aspects of our MEMS-based parametric ampli-

fier. Next, we discuss some of the issues we face when designing such a system,

then the actual design we built and tested. The tests we performed demonstrate

that the behavior of our system follows the theory.

The principles behind parametric amplification were discovered by Michael

Faraday [Faraday] in 1831, although it wasn’t until 1948 [van der Ziel] that these

principles were formalized. In 1956, Manley and Rowe [Manley] published what

is considered the seminal work, wherein they derived all of the important rela-

tionships of parametric systems. Even before then, several branches of Electrical

Engineering and Physics found great utility in parametric systems due to their

unique advantages. In particular, optical systems and early microwave systems

used parametric amplifiers quite extensively. Only within the last 20 years has

it been practical for microwave systems to use high speed transistors and other

techniques in lieu of parametric amplification.

35
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3.1 Introduction to Parametric Amplifiers

The essential feature of a parametric amplifier is that it has a nonlinear or time-

varying reactance. This reactance is used to couple a pump signal with the input

signal into a useful load by mixing the signals together.

A reactance is defined as a circuit element that stores and transfers energy. In

electromagnetics, an element that stores energy in the electric field is a capacitor,

and one that stores energy in the magnetic field is an inductor. In mechanics, a

reactance that stores energy in potential energy is a spring, and a kinetic energy-

based reactance is a mass. In both the electromagnetic and mechanical frameworks,

energy loss is caused by internal and external friction and is modeled by a resistor.

The purpose of the reactance in a parametric amplifier is to generate frequency

mixing, thus the requirement for the reactance to be either time-varying or non-

linear. It is possible, although difficult, to analytically solve for the behavior of a

time-varying linear reactance-based parametric amplifier, since the superposition

principle still holds. One would use Fourier analysis and Mathieu’s and Hill’s equa-

tions to model the system. The behavior of a system with a nonlinear reactance

is significantly more difficult to analyze. It can be shown that for the purposes

of parametric amplification, a time-varying reactance is equivalent to a nonlinear

reactance. [Manley] Manley and Rowe provide the framework for understanding

the power flow relationships when using a system with a nonlinear reactance. They

provide criteria for determining whether or not power gain is possible and what the

maximum gain may be under ideal circumstances. The only major constraint on

the reactance is that it must be single-valued over the range of operation (although

[Manley] does discuss some approximations for a hysteretic system, i.e. one that

is only double-valued).
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A nice analogy for the power transfer we are discussing is that of a child on

a swing. The child will be “pumping up” the amplitude of its swing by lowering

its center of gravity on each down-swing and raising it on the up-swing. The

pumping frequency here is twice of the swing frequency. This is an example of

a time-varying potential energy which amplifies the initial kinetic energy of the

starting swing state. It should be obvious from this explanation that this is a low

noise amplification technique.

For more thorough coverage of parametric amplifiers, there are several good

chapters and entire textbooks on this topic, such as [Yariv], [Collin], [Blackwell],

[Louisell], and [Richards].

3.2 Background Theory

3.2.1 Coupled Resonators

Before discussing the Manley-Rowe power relationships, we must first understand

the coupling between the different elements of our system. In particular, we have

several coupled resonators as well as our nonlinear reactive element. For a mechani-

cal system, these resonators must be coupled together via a spring (the zeroth order

term). Depending on the ratio of this spring constant to the masses, this coupling

will be either strong or weak. If the coupling is too strong, we find ourselves with

one system instead of two interacting systems. If the coupling is too weak, then

there is no interaction at all between the resonators. The condition for an easy to

analyze solution that produces efficient power transfer is that the kinetic energy

stored in the mass is much less than the potential energy stored in the springs.

Also, we should note that little energy will be transferred between modes if the
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resonant frequencies are significantly different. A good generalized discussion on

coupled oscillating modes is covered in Chapter 1 of [Louisell].

3.2.2 Manley-Rowe Power Relationships

Figure 3.1 shows the generalized system that Manley and Rowe analyzed. Note,

~

f0,1

fb~

f1,0

fa
C(t)

f1,1 f1,-1 f1,2 fm,n

Figure 3.1: Circuit model used in Manley-Rowe derivation

there are two input signals at frequencies fa and fb. There are also bandpass

filters and associated resistances at those frequencies, designed to reject power

not within the bandpass (i.e. they do not resistively dissipate the energy of un-

wanted frequencies). In addition to these inputs and the reactance (shown here as

a time-dependent capacitor), there is an infinite array of load resistances and asso-

ciated bandpass filters attached to the system. The frequencies of these additional

filter/load pairs are located at all of the sums and differences of the two input

frequencies. The symbolic convention we will use is fm,n, where the first subscript

is the number m times fa, and the second subscript is the number n timesfb. This

means that f1,0 = fa and f1,2 = fa + 2 × fb.

The sign convention we will use is that power flowing into the reactance (from

the sources) is positive, and power flowing from the reactance (into the loads) is
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negative. From this, [Manley] derived the power relationships:

∞∑
m=0

∞∑
n=−∞

mPm,n

fm,n

= 0 (3.1)

∞∑
n=0

∞∑
m=−∞

nPm,n

fm,n

= 0 (3.2)

The Manley-Rowe power relations above describe the conservation of energy

in systems with parametrically coupled resonators. It should be duly noted here

that the Manley-Rowe derivation does not depend on linearizing any aspect of the

system and is thus valid for small signals as well as large signals. Another point is

that these power relationships equally apply to nonlinear as well as time-varying

reactances.

3.2.3 Three- and Four-Frequency Parametric Devices

When we start reducing the number of loads in the system, we find the behavior

becomes much more interesting. For instance, if we were to remove all but the f1,1

load, this would reduce the Manley-Rowe equations to:

P1,0

f1,0

+
P1,1

f1,1

= 0 (3.3)

P0,1

f0,1

+
P1,1

f1,1

= 0 (3.4)

In words, we are supplying P1,0 and P0,1 to the reactance from the input sources.

This means that P1,1 must be negative and this power flows from the reactance

into our load at f1,1. We define the power gain of this system:

gain1,0 = −P1,1

P1,0

=
f1,1

f1,0

(3.5)
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gain0,1 = −P1,1

P0,1

=
f1,1

f0,1

(3.6)

This particular system is called an up-converter (it may also be referred to as

a sum-frequency amplifier, a frequency converter, or a non-inverting amplifier).

Figure 3.2 is a graphical interpretation of these equations. We can work out the
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Figure 3.2: Gain versus the ratio of frequencies. The x-axis is f−1,1

f1,0
and the y-axis

is P−1,1

P1,0
.

same set of equations for any three-frequency system (i.e. one in which there are

three frequencies that are not filtered out). These would all produce a similar

outcome, namely that the gain is proportional to the ratio of the frequencies.

The gain calculated by this method is the maximum theoretical gain achievable

in any particular configuration. In reality the gain is limited by unaccounted for

reactances, resistive losses, imperfect filters, and imperfect mixing.

Another common three-frequency system is called the down-converter. The
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primary distinction between down- and up-converters is the frequency of the output

(f−1,1, the difference of the input frequencies, versus f1,1, the sum of the input

frequencies). One interesting observation about the down-converter system (also

known as the negative resistance parametric amplifier or an inverting amplifier) is

that the reactance is delivering power not only to P−1,1 but also to P1,0 (i.e. one

of the signal sources)! This means that theoretically we can have infinite gain,

as the source at f1,0 does not necessarily have to be enabled. This device can be

unstable and produce sustained oscillation at both f1,0 and f−1,1. Unfortunately,

these devices need to be driven close to instability to achieve a large gain.

If we look at a system with both the sum and difference frequencies (called

a four-frequency parametric amplifier), we find that the gain between f1,0 and

f1,1 may be greater than was predicted by the three-frequency systems described

above (i.e. f1,1/f1, 0). This increase is due to the regenerative action of the power

dissipated in the negative resistance at the difference frequency f−1,1, wherein

power is fed back to the input signal at f1,0. Also, we find that this system is more

stable than the down-converter, because it has the up-converter to stabilize it. We

find that the Manley-Rowe power equations reduce to:

P1,0

f1,0

+
P1,1

f1,1

− P−1,1

f−1,1

= 0 (3.7)

with a power gain between f1,0 and f1,1 of:

gain = −P1,1

P1,0

=
f1,1

f1,0

− P−1,1f1,1

P1,0f−1,1

(3.8)

remembering that the gain will be increased because of the negative resistance at

f−1,1, which will cause regeneration.

Before moving on, it is also worth mentioning that there is a special form of the

down-converter known as a degenerate parametric amplifier, where the input and
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output signals are at roughly the same frequency (i.e. within the same bandpass)

and the pump is about twice the input frequency. The case where the signal and

output are at exactly the same frequency is known as a phase coherent degener-

ate parametric amplifier. The gain is highly dependent on the phase relationship

between the pump and the input signal. We have not attempted to characterize

either of these cases, although operation of a non-phase coherent degenerate para-

metric amplifier is demonstrated in Section 5.2. A degenerate parametric amplifier

has certain drawbacks for MEMS sensor applications, as discussed in Section 5.1.

3.2.4 Noise

As mentioned previously, one of the major attractions to a parametric amplifica-

tion scheme is the potential for very low noise amplification. Without going into

detail, we wish to present a few of the notable issues related to noise in parametric

amplifiers. Active devices (such as a vacuum tube or a transistor) inherently have

Johnson noise due to built-in resistances. Parametric amplifiers use reactances

and are immune from this noise source. This subtle difference is important since

resistances are sources of thermal noise, whereas reactances have no inherent noise

sources. A generalized equation describing the total noise output power from our

amplifiers is:

Ntotal = kBTsg
2 + kTeBg2 (3.9)

where k is Boltzmann’s constant, B is the bandwidth in Hertz, g is the gain, Ts is

the temperature of the source resistance, and Te is the “excess noise temperature”

to account for additional noise sources in the system (see [Gordon]). The key

feature one should note is the relationship between noise power, the bandwidth,

and the square of the gain. Increasing bandwidth or gain leads to more noise.



43

One should keep this in mind throughout the discussion in Section 3.2.5 on the

gain-bandwidth relationship.

With proper design, it is possible to achieve lower noise at the same gain than

one can with an active amplifier. We shall bypass any further discussion on the

theory of lowering the noise in a parametric amplifier. Although we have not

described many of the noise issues in this chapter, there is copious literature on

the topic (although most of it is highly specific to particular microwave devices

and diodes). In particular, [Tien] provides an excellent analytical framework.

3.2.5 Gain-Bandwidth Relationship

Before departing from the theoretical background of parametric amplifiers a quick

word on the relationship between the gain and the bandwidth. As is typical in

most amplification schemes, there is a fixed relationship between the gain and the

bandwidth of a parametric amplifier. This has a close relationship to the quality

factor (Q) of the resonant circuit as follows:

b
√

gain = 1/Q (3.10)

where gain is the transducer power gain, b is the fractional bandwidth, and Q

is the quality factor of the loaded amplifier resonant circuit. This equation is an

approximation of the actual relationship in the case of low-loss amplifiers. We will

only use this equation to emphasize some of the tradeoffs we must consider when

designing our parametric amplifier.

One might also think it would be a simple matter to couple two (or more)

circuits at similar frequencies to enhance the bandwidth, however, one must always

keep in mind that a parametric amplifier is not a simple linear amplification system
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that can be separated and recombined using superposition. This is particularly

important when dealing with the mixing action of the nonlinear reactance. While

there are several theoretical treatments of this subject such as [Kuh], [Gilden], and

[Matthei], they are all heavily focussed on microwave devices with impressively

refined empirical models of the nonlinear reactances commonly used in microwave

parametric amplifiers.

3.3 Design of a MEMS Parametric Amplifier

3.3.1 Assumptions

When planning any new design we must first decide what the important issues

are such that we end up with a system that we can model. The first step in this

procedure is to decide what assumptions we can make. To start with, we will

assume that our entire system is composed of lumped elements. We will comply

with all of the assumptions implicit in the Manley-Rowe derivation except for one,

namely that our bandpass filters are not perfect. This issue will be discussed

further in Section 3.3.2

We also assume that we can accurately measure the displacement of our me-

chanical system. This is certainly not true, however, within limited regions of

measurement and by utilizing more than one independent measuring technique

we have reasonably high confidence in the measurements presented in this work.

Further discussion on the measurement techniques, some of the reasoning behind

choosing these techniques, and some of their pitfalls are discussed in Sections 4.2

and 4.3 as well as Appendix B.

Additional assumptions we make are that our mechanical springs are linear (no
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hysteresis or cubic terms), all of the assumptions implicit in designing linear elec-

trostatic actuators, and that our spring-mass systems only exhibit a second-order

behavior. Fortunately, we have been able to sufficiently demonstrate that these

assumptions hold. Within certain characterized ranges of motion, our mechanical

springs, excited by the linear electrostatic actuators, show no higher order behav-

ior. It is possible to repeatably show that the displacement is, within a very small

error range, directly proportional to the applied voltage squared (see Equation 2.6

for an explanation of why the voltage is squared and Section 4.1 for further discus-

sion of this error). Figure 3.3 demonstrates a measurement of this repeatability on

the device we used for most of our parametric amplifier tests. There is some slight
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Figure 3.3: Normalized displacement vs. V2 measurement of ma104113, driven by

signal bank, averaged over 100 times. Actual displacement was 910 nm.

hysteresis, probably due to charging of the bump stops on the parallel plate actua-

tors (see Section 3.3.4 for a description of the bump stops). The slight discrepancy
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between the two vibrometer and the circuit measurements is most likely due to the

vibrometer drifting during the measurement (see Section 4.2.2). When we excite

our system at resonance, we further find that it exhibits a clean Lorenzian shape

characteristic of a second-order system. In addition, when we excite our system

with a step function, it exhibits a damped ringing behavior, as seen in Figure 3.4.

The device rings for enough cycles that the individual vibrations are no longer

visible, so all that can be seen in this figure is the envelope. Again, note the slight

drift in the vibrometer measurement.
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Figure 3.4: Step response of ma104113 due to a step function at time 0 from 7 V

to 0 V. This measurement has been averaged over 100 times. The actual ringing

is obscured and only the envelope is visible.
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3.3.2 Tradeoffs

As with any engineering endeavor, we must decide upon tradeoffs in our design,

often without enough information to make optimized calculations. This is the

situation we found ourselves in when initiating this project. It has taken several

design revisions to reach this point, and in this section we discuss the logic behind

the tradeoffs in our design and hopefully provide some insight for future researchers

on this topic.

As mentioned above, we find ourselves in the unenviable position of being un-

able to produce perfect filters in the sense required by Manley and Rowe — that

the filters reject all power at non-resonant frequencies as opposed to resistively

damping most power at non-resonant frequencies. Experimentally, we have deter-

mined that MEMS filters created using the SCREAM process (see Appendix A)

do a reasonably good job of rejecting most power at non-resonant frequencies, but

are incapable of rejecting all power. The most obvious method of increasing this

rejection ratio is to raise the mechanical Q of the system (i.e. less resistive damp-

ing at resonance). We come to our first tradeoff: too high of a Q gives excellent

damping of non-resonant frequencies at the cost of a negligible bandwidth (see

Equation 3.10). If we chose a small Q, then we achieve large bandwidth at the

cost of larger power dissipation and noise (due to the increased resistive damping,

also see Equation 3.9). The issues at stake here are the gain-bandwidth prod-

uct and that non-resonant frequencies will not be sufficiently damped and power

will be delivered to those frequencies instead of exclusively to the desired output

frequency.

Experimentally, we have determined that the Q of a SCREAM device is on

the order of 1000 at a pressure of 3 mT. We have tested similar devices under
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higher vacuum and found that the damping does not decrease significantly. As

explained in Section 2.2 of [Nguyen], 1 mT is the approximate transition pressure

between external (due to gas interactions) damping and internal (due to internal

friction) damping. As seen below, a Q of about 1000 is sufficient for proof-of-

concept parametric amplifiers. We would, however, gain by increasing the Q of

our resonators. This would also allow us to apply more thorough analytical studies

and simulations to our system. A different fabrication process could be used (e.g.

the processes developed by [Webb], [Huang], or [Reed]) to reduce the internal

damping. [Huang] has demonstrated a Q of 50,000.

We also face some serious tradeoffs when choosing the resonant frequency of

our MEMS. For a second order system, the resonant frequency is related to the

mass and lumped spring constant as Equation 2.5 (f = 1
2π

√
k
m

). A high resonant

frequency for the output filter allows for larger gains (due to Equations 3.5 and 3.6)

at the cost of either significantly reduced mass or dramatically increased spring

constant. A high spring constant is unacceptable, as it will restrict the maximum

displacement available, which makes displacement detection more difficult. Too

small of a mass is also a problem, as it restricts the size and layout of the MEMS,

meaning that we may not have enough sensor or actuator banks to induce adequate

motion for detection.

3.3.3 MEMS-related Issues

This section is dedicated to the several issues that arise when implementing this

system as a MEMS that may not be intuitively obvious. For starters, one might

think that a design wherein the signal actuators are rigidly connected to the pump-

ing actuators (i.e. via a rigid backbone) would be considered strongly coupled
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under the definition provided in Section 3.2.1. This is not entirely the case, as

there is an electrostatic spring constant between the fixed part of the actuator and

the moving part. As explained in [Adams], there is a soft electrostatic coupling

between the two elements of a MEMS actuator (the fixed and the moving) within

certain ranges of operation. This electrostatic spring constant is also the source of

our time-varying reactance.

Another issue worth mentioning is that we get additional harmonic content in

our system due the the nature of the electrostatic comb drives used to manipulate

our MEMS. The fundamental relationship here is that the displacement is propor-

tional to the applied voltage squared. If we have two input signals, each with a

slight DC offset (Va0 and Vb0), we end up with:

F ∝ ((Va0 + Va sin(ωat)) + (Vb0 + Vb sin(ωbt)))
2 (3.11)

F ∝ V 2
c0 + 2Vc0Va sin(ωat) + 2Vc0Vb sin(ωbt) + 2Va sin(ωat)Vb sin(ωbt)

+ (Va sin(ωat))
2 + (Vb sin(ωbt))

2

where Vc0 = Va0 + Vb0. Now, recall that multiplication in the time domain is

equivalent to convolution in the frequency domain. This, then, gives us frequency

mixing. This sort of mixing, however, does not produce parametric amplification,

as the mixing is caused during electromechanical transduction and not in any

reactive elements.

And finally, two signals Fm and Fn are said to be harmonically related if the

ratio of their frequencies Fm

Fn
is a rational number. This can lead to harmonic

distortion, wherein the harmonic content of two signals can interfere with each

other. We can avoid this by having the ratio of the two signals, Fm and Fn, be

irrational. For an actual system, there must be a common frequency basis, say Fk.
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Thus Fm

Fk
and Fn

Fk
are rational, but Fm

Fn
is not. A degenerate parametric amplifier

takes advantage of this harmonic distortion, assuming the phases are properly

aligned.

3.3.4 Design Overview

As discussed in Section 2.2, we will use a double-folded design for our springs

and comb drives for our sensors and actuators. Lastly, we need a time-dependent

reactance to make our system complete. Using the work done [Adams], we will need

to add a time-dependent term to either the zeroth or the second order terms of the

MEMS’s equation of motion. Since we cannot fabricate a simple time-dependent

mass using MEMS techniques, we use a variable stiffness:

mẍ + cẋ + (k + kelectrical)x = Fexcite(Ve) (3.12)

where m is the lumped mass of our system, x is the displacement, c is the damping

coefficient, k is the lumped mechanical stiffness of our springs, kelectrical is the

lumped electrostatic stiffness, and Fexcite(Ve) is the excitation force on the system

as a whole. In our system, the excitation force is applied by one of the comb drives.

If we consider a parallel plate drive for the electrostatic stiffness (see Chapter 3.2

of [Adams] for more detail), the force on the plate is:

F (x) = −kx +
1

2

ε0AV 2
t

(d − x)2
(3.13)

where A is the area of the parallel plates, Vt is the voltage applied across the plates,

and d is the initial gap between plates. Performing a Taylor expansion of this force

about the stable point x�� gives us:

F (δ + x��) =

(
−k +

1

2

ε0AV 2
t

(d − x��)3

)
+

(
−k +

ε0AV 2
t

(d − x��)3

)
δ + O(δ2) (3.14)
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By definition, the force at the equilibrium point is zero, cancelling the first term.

Ignoring the higher order terms, we arrive at:

F (δ + x��) =

(
−k +

ε0AV 2
t

(d − x��)3

)
δ (3.15)

Thus we find that the electrostatic stiffness can be represented as:

kelectrical = − ε0AV 2
t

(d − x��)3
(3.16)

The electrostatic stiffness is directly dependent on a tuning voltage, which is

easily varied with time. Thus, the parallel plate drive produces the necessary a

time-dependent reactance. Figure 3.5 demonstrates how the resonant frequency

shifts as we apply bias to the parallel plate drives.
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Figure 3.5: The resonant frequency shifting as bias is applied to the parallel plates

of ma104113. System is driven by random noise source of HP 89410A at 4 V.

We chose to use parallel plate drives, as they are significantly more efficient (in

terms of chip area and energy) than other tuning techniques. Recall the discussion
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in Section 3.3.2 about the tradeoffs between mass and resonant frequency. The

major downside is that these devices display a singularity that exhibits itself as

a “pull-in”, wherein the parallel plates jump from a stable position to a closed

position where the plates stick together. When the plates are stuck, the rest of the

system is unable to move. By inserting bump stops, we make this pull-in behavior

last only as long as the voltage is applied between the plates (i.e. it is reversible).

As these bump stops are electrically isolated from the rest of the system, we have

often noticed that they became charged, causing slight hysteresis. This occurs

primarily when the parallel plates are in close proximity to the bump stops.

Another challenge we face is that the electrostatic stiffness is dependent on

the displacement. While this may seem inconsequential, it is a substantial issue,

as the direction of motion of our tuning actuator is along the same axis as the

direction of motion of our input signal and output signal(s). As long as we keep

the amplitude of our input and output signals much smaller than the amplitude of

our tuning actuator, we can approximate it as a linear system. Figure 3.6 shows a

schematic overview of the system already attached to our capacitive displacement

sensing circuit.

3.3.5 Design Details

Taking all of the factors mentioned in the preceding sections into consideration, in

addition to the design constraints of the SCREAM process, and the limits of our

displacement detection schemes (see Sections 4.2 and 4.3), we designed a device

with a resonant frequency of approximately 6 kHz and a Q of about 1000 at 3 mT.

The device has 132 fingers in the signal bank of comb drives, 198 fingers each

on the sense banks of comb drives, all with a drawn comb finger gap of 3.5 µm.
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Figure 3.6: Schematic overview of the parametric amplifier design attached to a

capacitive displacement sensing circuit
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The springs are 250 µm long and 1 µm wide. The 8 parallel plate drives are each

300 µm long at an initial separation of 4 µm. The measured depth of this device is

30.7 µm which makes the total parallel plate area 73680 µm2. The actual design,

as tested in the next section, is shown in Figure 3.7.
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plates signal
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folded
springs
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traces

Figure 3.7: Overview of a ma3 device, as viewed from an optical microscope. From

left to right: folded springs, two sense comb banks, parallel plate bank (with bump

stops), signal comb bank, and matching folded springs. Surrounding the device are

the electrical traces and contact pads, including ground traces and pads between

every critical signal path.
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3.4 Results

3.4.1 Interpreting the Data

We begin with the interpretation of the raw data. The procedure employed here

is similar to that presented in Section 2.3.2. We shall start with the raw data in

Figure 3.8.

Figure 3.8: Raw data visualization. This data is of ma104113 driven by an 8 V p-p

pump at 5.6 kHz, with an 8 V p-p signal ramped from 10 to 400 Hz

The x- and z-axes represent the data acquired by the spectrum analyzer (in Hz

and dBV) displaying the displacement amplitude of our device at specific frequen-

cies. The y-axis represents the independent variable, the frequency of the input

signal. Immediately apparent is the prominent 5.6 kHz peak from the 8 V p-p

pump signal (f0,1) that is present in all of the y-axis traces. Another peak that is

present in all traces is the 5.91 kHz peak which is the resonant frequency of this
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system under the current pumping conditions (see Equation 3.12 and the associ-

ated discussion). There is always a peak near here regardless of the input signals

due to the undamped nature of the system near this frequency and the random

mechanical fluctuations of the system (see Section 4.4). Also present is a small

peak at 4.87 kHz. We are unsure of the nature of this peak, however we suspect it

can be attributed to an undesired mode of operation.

Next, we focus our attention on the six diagonal traces that vary in amplitude.

These are the output of our mixer as we sweep the input signal from 10 to 400 Hz.

The two traces immediately flanking the pump are f−1,1 and f1,1. Surrounding

those are f−2,1, f2,1, f−3,1, and f3,1. Note all these frequency components have peaks

near where f1,1, f2,1, and f3,1 cross the 5.91 kHz peak due to the reduced damping.

One notices that the f1,1 and f−1,1 traces appear to have slightly distorted shapes

(i.e. not quite perfect Lorenzian). This is most likely due to the fact that the

amplitudes are large enough that the conditions in Section 3.3.4 do not apply

anymore, namely that the electrostatic stiffness is being modulated by these signals

as well as by the applied pump voltage.

Now that we understand the general features of our system, we focus on the

data of interest for further analysis. In this case, we extract the f−1,1, f−2,1, and

f−3,1 traces from Figure 3.8 and plot them in Figure 3.9.

Now, we realize that this information is interesting, but of no further value

unless we normalize it against the amplitude at the input frequency (so we can

obtain the gain). The behavior of the system at the driving frequency is shown in

Figure 3.10. The peaks at 30, 60, and 180 Hz are due to the motion of the vacuum

pump attached to the system. Even though the amplitude of excitation is constant

(8 V), the measured displacement is not. This is due to the mechanical behavior
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Figure 3.9: Data extracted from Figure 3.8 for further analysis. This figure shows

the data from the f−1,1, f−2,1, and f−3,1 traces, discarding extraneous information.
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Figure 3.10: Amplitude of system at input frequencies (8 Volts)
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of our system and not due to errors associated with the measuring apparatus.

The final step, of course, is to find the gain by dividing the power of the output

signal by the power of the input signal. We square the measured displacement to

get the power in the absence of a velocity or damping measurement (i.e. P ∝ X2
max,

where P is the power at any frequency and X is the amplitude of displacement at

that frequency). Thus, we arrive at Figure 3.11, which shows a plot of gain versus

output frequency.
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Figure 3.11: Gain, extracted from Figures 3.10 and 3.9

In this plot, we see that near the pump frequency (i.e. the input frequency is

very small, about 10 Hz), the gain is very high. As the input frequency increases,

the gain starts dropping off. When the device is at resonance, we see an enormous

increase in gain (due to the reduced damping at this frequency). There is a slight

dip in the f−2,1 peak due to the vacuum pump artifact at 180 Hz as measured on

the input signal. As the input frequency increases, the gain drops to zero. The
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gain at resonance in this plot is not greater than one due to a variety of factors.

The primary contributor is that the frequency ratio in this experiment is fairly

low (i.e. 5910
5910−5600

Hz) and this gain isn’t enough to overcome the damping in our

system with a Q of about 1000. If we had our mechanical resonance closer to the

pump frequency, the parametric amplifier gain would be higher (see Section 3.4.3).

Another contributing factor is that some of the power is dissipated at other fre-

quencies. Also, the small pumping signal at 8 V p-p is not very efficient, and we

will achieve higher gain with a larger pump amplitude.

The final step in our walkthrough of data interpretation, is to plot the gain

versus the ratio of frequencies. In the case of this particular set of data, the results

of this plot are fairly meaningless as we don’t have enough detail in the region of

rapidly changing gain where the frequency ratio is high. Nevertheless, the results

are shown in Figure 3.12 with logarithmic axes.

3.4.2 Demonstrate Applicability of Manley-Rowe Equations

Now, hopefully the reader has a reasonable understanding of the transformations

necessary to take the measured data and convert it into useful data, as well as a

grasp of the challenges we face during this procedure. We shall therefore continue

and present the data that demonstrates that the MEMS-based parametric amplifier

presented in the previous sections follows the behavior described by the Manley-

Rowe equations.

To demonstrate a working MEMS parametric amplifier, we must show three

things: that the Manley-Rowe equations hold, that our system has gain, and that

the output amplitude is linearly related to the input amplitude. The most direct

method of demonstrating that the Manley-Rowe power relationships hold is to
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Figure 3.12: Gain versus the ratio of frequencies for measurements near resonance.

That is, the x-axis is f−x,1

f1,0
and the y-axis is P−x,1

P1,0
, where x=1, 2, 3.

plot the gain versus the ratio of frequencies. As you recall from the discussion in

Section 3.2, the gain is proportional to the ratio of frequencies.

To begin with, it is impractical to attempt this measurement directly, as our

system has a Q of about 1000, and we end up with data looking like Figure 3.12.

This means that any attempt to characterize the gain to the ratio of the frequencies

would only be applicable over a very small frequency range unless we attempt to

deconvolve it from the bandpass behavior of the mechanical device. As shown in

Figure 3.11, the gain is highly dependent on its proximity to the resonant frequency

of the mechanical system. Instead of using this approach, what we will do here

is to entirely bypass the issue of bandpass filtering and perform this measurement

away from resonance. Thus, our system would look like the one in Figure 3.1

wherein all of the harmonics are present across the time-varying reactance. This
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leads to the undesirable consequence of negative gain (i.e. attenuation) due to the

power being distributed among the other harmonics in addition to being dissipated

by the internal damping of our mechanical system. Nonetheless, we still observe

the behavior expected of the Manley-Rowe equations, as seen in Figure 3.13. This

measurement was performed by applying a fixed pump signal at 5 kHz of 4 V p-p.

The input signal (f1,0) was ramped from 20 Hz to 350 Hz. The amplitude of the

input signal was also ramped, from 2.5 V to 10 V. The data points presented here

are averaged over the entire range of input amplitudes to demonstrate that the

system behaves similarly over a range of inputs.
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Figure 3.13: Gain versus the ratio of frequencies for ma104113, f0,1 = 5 kHz at

4 V, f1,0 = 20 Hz to 350 Hz. Each data point is averaged over a range of input

amplitudes (from 2.5 V to 10 V). The x-axis is f−1,1

f1,0
and the y-axis is P−1,1

P1,0
.

As there is attenuation, we have normalized the measured behavior to the

theoretical, which is simply a plot of f−1,1

f1,0
versus f1,0. We have found this frequency
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dependent gain to occur over a wide parameter space. This same experiment has

been performed at over seven different pump frequencies, at five pump amplitudes

(see Figure 3.14), and at twenty different signal amplitudes and the results are

essentially the same — the gain follows the behavior of the Manley-Rowe equations.

We have also performed this experiment in an up-converter configuration as well

as a down-converter arrangement and again found the same behavior.
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Figure 3.14: Gain versus the ratio of frequencies for ma104113, f0,1 = 5 kHz at

five voltages, f1,0 = 20 Hz to 350 Hz. Each data point is averaged over a range of

input amplitudes (from 2.5 V to 10 V). The x-axis is f−1,1

f1,0
and the y-axis is P−1,1

P1,0
.

The only consistent discrepancy we have noticed is that the gain is often slightly

less than the theoretical prediction. This is possibly due to some lossy behavior

of our electrostatic spring. Not all of the force exerted by the electrostatic field is

necessarily applied to our system.
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3.4.3 Gain

So far, we have only presented measurements of our parametric amplifier in neg-

ative gain situations (i.e. attenuation). We have found that the Q of our system

is too low for the amplifier to have positive gain over a large parameter space (see

Section 3.3.2 for a discussion of the tradeoffs in picking a Q for the system). It

is still possible, nonetheless, for our system to have positive gain within a limited

range, as shown in Figure 3.15.
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Figure 3.15: Large gain versus the ratio of frequencies for ma104113, f0,1 = 5.7 kHz,

f1,0 = 0 Hz to 100 Hz at 10 V p-p. Each data point at a particular frequency ratio

has a pump amplitude from 4 to 8 V with a DC offset of 3 V. The x-axis is log10
f−1,1

f1,0

and the y-axis is log10
P−1,1
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The theoretical curve in Figure 3.15 is normalized to the maximum gain of 316.2.

It should be pointed out that the reason the data points at any particular frequency

ratio vary by such a large amount is that the behavior of the system changes quite
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substantially at different pumping amplitudes. This runs contrary to the results of

the Manley-Rowe equations in a simple up-converter configuration (Equations 3.5

and 3.6), where the gain is independent of the power levels. Recall from the discus-

sion on four-frequency systems that the gain equation (Equation 3.8) is partially

dependent on the power of the input and pump signals. We believe that this de-

pendency is the cause for the discrepancy between frequency ratio and power gain

in Figure 3.15.

3.4.4 Linearity of the System

An important property of any amplifier is that there is a known, well characterized

single-valued relationship between the input amplitude and the output amplitude.

We have found that our system behaves very repeatably, even after a month’s delay

between tests. A linear behavior is highly desired as it simplifies the entire system

design. From the discussion in Section 3.3.4 there is only a limited range over

which our parametric amplifier displays linear behavior. Figure 3.16 demonstrates

that the gain is constant irregardless of the input signal amplitude at several input

frequencies.

3.5 Conclusion

It should be immediately apparent to the reader that we are not dealing with a

simple system, but rather a multitude of coupled systems, each with its own loss,

transmission, and reflection mechanisms as well as noise sources. These systems

range from the electrostatic coupling between MEMS actuators to the mechanical

coupling between anchors and the substrate. By concentrating only on the key
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features of the complete system, we can design, construct, and test a device for

comparison with models. To that end, this chapter has discussed the issues a de-

signer will face when attempting to adapt the system presented here to new design

rules and applications. We have also presented measurements in Section 3.4.2 of

our device and how it matches with theory over a wide parameter space.

3.5.1 Advantages and Disadvantages of Parametric Ampli-

fication

There are two key advantages that parametric amplification has over active ampli-

fication (e.g. transistors and vacuum tubes) for the purpose of providing an initial

stage of gain to a MEMS sensor. The first is that parametric amplification does

not require any active devices to achieve gain. This leads to simpler fabrication
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processes, as the designer needs only consider the electromechanical components

of the system. The second main advantage is the potential for very low noise am-

plification, due to the inherently low-noise nature of parametric amplification (see

Section 3.2.4).

One of the additional benefits of this approach is that with parametric ampli-

fication, the signal to be measured is up-converted to a higher frequency. This

increases the sensitivity of capacitive-based displacement detection schemes. See

Section 4.3.2 for more information.

The most immediately noticeable disadvantage of parametric amplification is

the limited bandwidth of signals that can be amplified. This limits parametric

amplification to narrowband applications.

Other advantages of parametric amplification, as a result of the Manley-Rowe

power relationships. are that the gain is independent of type of nonlinearity, inde-

pendent of load impedance, and is not limited by any small-signal approximations.

3.5.2 Summary

We have presented an electromechanical parametric amplifier with built-in dis-

placement detection and bandpass filtering where the time-varying component is

an electrostatic spring constant. Although prior work has been performed using

one or more of these characteristics, there is no record of any such system incor-

porating all of them [Golubtsov], [Oelfke], [Eisinger], [Albrecht], [Dougherty], and

[Rugar]. [Dâna] has built a degenerate parametrically amplified microcantilever,

although their highest reported gain is less than 20 dB. Their non-degenerate gain

is reported as 1 dB.

The system presented here follows the characteristic behavior predicted by



67

[Manley] and [Rowe]. It should be emphasized that although all measurements

presented in this chapter have been performed on only one device, we have observed

the same behavior on other devices with different designs. The gain we presented

may not be amazingly high at large bandwidths, however the results shown here

are more than sufficient to prove that not only is such a device feasible, but it is

worth further investigation for a variety of exciting practical applications.

For example, if we couple this amplifier with a sensor of some sort (such as the

AFM described in Chapter 2), we can then amplify the signal this sensor produces

without the use of transistors. This gives us the flexibility of choosing a MEMS

fabrication process that is not limited by the requirements of VLSI technology.

The devices presented here were all fabricated using the SCREAM process.

To reiterate, the major advantage of this method is that the parametric ampli-

fier can have lower noise than an active amplification scheme. See Section 5.2 for a

demonstration of the increased signal-to-noise ratio of a parametrically amplified

system.



Chapter 4

Sources of Noise and Error

Inherent to the Experiments

A thorough noise analysis is beyond the scope of this thesis. In this chapter we

merely enumerate some of the more obvious sources of noise and error relevant

to our system and (if possible) methods of ameliorating them, therefore the noise

figure of the parametric amplifier is not calculated.

4.1 Frequency/Amplitude Accuracy

Our measurements are meaningless if we have not calibrated our measurement

tools. We would be remiss if we did not check that the frequency measured is

the same frequency of motion and the the amplitude measured is the same as the

displacement of the device. Fortunately, we had two orthogonal measurement tools

(laser vibrometer and capacitive circuit) with which we could independently verify

these parameters.

The frequency accuracy was the easier of the two calibrations. We can apply a

68
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known frequency to a simple device and it will move in very strict relationship to

this frequency. We found that both tools had a frequency error of less than 0.5 Hz

over the frequency and amplitude ranges of interest.

The amplitude accuracy was significantly more difficult, as the amplitude be-

havior of even a simple MEMS device is rather complex. As discussed below, the

circuit’s amplitude measurement is subject to systematic error if the comb fingers

do not provide a perfect linear relationship between displacement and capacitance.

Aside from this, we found the amplitude accuracy and repeatability to be excel-

lent (within 0.5%) when compared to the expected behavior of the circuit over the

range of interest.

The laser vibrometer system fared less well. The vibrometer has a D/A con-

verter with a least significant bit corresponding to 4 nm displacement. Signals

below a threshold of about 16 nm (about -40 dBV) may still have accurate dis-

placements if the harmonic content is very limited. Recall that a square-wave has

a frequency spectrum combined of odd harmonics of the fundamental frequency of

the square wave. Thus, if we are attempting to detect more than one fundamental

frequency less than this threshold, they absolutely must not be harmonically re-

lated (i.e. not multiples or factors of each other). This may not seem like much of

a problem until one realizes that devices with a quality factor of about 1000 still

have somewhat broad spectra at resonance. This means that we cannot trust any

measurements from the vibrometer that are less than about 16 nm unless there is

only one fundamental frequency present.

The vibrometer system also has a soft upper limit on the amplitude it can

detect. Above displacements corresponding to about 1 µm, the vibrometer starts

to lose track of its measurement and the amplitude accuracy suffers accordingly.



70

Within the range of acceptable amplitude measurements, the vibrometer is still

strongly subject to mechanical noise and thermal and acoustic disturbances. We

also found amplitude measurement to be not entirely repeatable. Two averaged

measurements may report amplitudes differing by up to 20%! We consider this the

amplitude accuracy of our vibrometer system.

The numbers quoted here are not meant to be definitive by any means. We

merely hope to provide some guidelines as to what one can expect when using

these systems and interpreting the measured data. The succeeding sections in this

chapter outline some of the sources of noise and error present in our system and

some of the steps we found successful in reducing them.

4.2 Laser Vibrometry

Figure 2.1 shows a schematic overview of the laser interferometer system we utilized

to detect displacements. The users’ manual is very thorough in describing its

operation [Polytec]. We will briefly discuss its operation to provide a framework

for discussing the noise and error issues.

Our system is akin to other interferometer systems in that it detects the dis-

placement information via the phase of the interferometer output. This phase

information is then sent through a phase multiplier (multiplies the phase by a fac-

tor of 80) and a quadrature demodulator. This information is then sampled by

a 12 bit analog-to-digital converter (4096 steps). The digital information is then

used to count the total displacement relative to an arbitrary zero point. The least

significant bit of this counter corresponds to 3.955 nm and the most significant bit

corresponds to 16.2 µm. This digital signal is then sent through various tracking
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filters and is finally outputted through a 12 bit digital to analog converter with

1 µm corresponding with 1 Volt.

Due to the nature of the phase multiplier, the velocity is limited to 150 mm/s.

At high velocities, counting losses occur, which result in distorted signals.

4.2.1 Sources of Noise

The most apparent sources of noise are those which directly change the displace-

ment between the interferometer and the sample. Since our interferometer system

does not have a reference beam aimed at a non-moving part of our device provid-

ing a differential measurement, the vibrometer system cannot distinguish between

interferometer/sample movement and actual sample motion. We have found that

placing the sample on a vibration isolation table greatly reduces the effects of

building noise being transmitted from the floor of the lab to the sample. The

next most immediate source of relative movement is the vacuum pump we use to

evacuate our vacuum chamber. The 30, 60, 120, and 180 Hz motion of this pump

is present in all measurements (as seen in Figure 3.10) unless we seal our chamber

and turn off the pump. Since our roughing pump sits on the floor, we must also

disconnect the hose between the pump and the chamber, as we have found it feeds

through motion from the floor of our lab. Cables connecting to our chamber on

the vibration isolation table must also be carefully routed such that they do not

feed through motion as well.

The least apparent sources of mechanical noise we encountered were those that

modified the optical path the laser travels through, such as acoustic noise. Loud

noises, such as an item being dropped on the other side of the lab, are picked up

by the vibrometer, but not the capacitive circuit. It is thus imperative to place
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the laser system in a quiet portion of the lab, where it will be undisturbed.

The digital nature of the vibrometer system also creates quantization noise.

The random fluctuations of the laser in the vibrometer system are also sources of

random error once the laser has reached thermal equilibrium. These effects cannot

be eliminated.

4.2.2 Sources of Error

As mentioned above, the vibrometer system is prone to error. There are many

sources of both dynamic and quasi-static error. The only truly dynamic error is the

digital harmonic distortion mentioned above. Dynamic measurements, however,

are influenced by rapidly varying quasi-static error sources. As described in the

previous section, the dynamic displacement reading may vary by upwards of 20%

between measurements. We have observed this variance occurs on the order of

0.5 Hz, which is much less than the time it takes to complete one measurement.

Sources for this quasi-static error are most often due to the interferometer mov-

ing relative to the sample. In our environment, the interferometer is mounted on

an optical microscope (such that we may focus the spot on a very small feature

of our device). Slight movement of the focus mechanism on the microscope trans-

late directly into error in measurement. Thermal variations will also make the

microscope expand and contract, raising and lowering the interferometer.

We have found that unless we clear the displacement counter every few minutes,

the “rest” position of our device drifts towards saturation of the displacement

counter. As the signal approaches either limit, the amplitude accuracy decreases.

When the signal is larger than one of the limits, it wraps to the other limit. There

is no circuitry in the vibrometer which detects this counter overflow or underflow.
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Therefore, when the signal wraps over, our device appears to move the maximum

displacement (16 µm) during each cycle!

This drift is also a problem when attempting quasi-DC measurements, such as

in Figure 2.7. For quasi-DC measurements, we have found it necessary to clear

the displacement counter between each cycle (we tend to ramp the voltage over

about 1 second). The displacement counter is reset to zero when the driving signal

begins each cycle. This is why some measurements (such as Figure 2.9) appear to

have a discrepancy at zero voltage as the drift is corrected here.

The last source of error we will mention is that shown in Figure 5.2. Here we

see that the the vibrometer reports that there are displacement at less than 1 kHz

of high amplitude. There are no such displacements at these frequencies. This

statement is supported by the fact that these frequencies are present even in the

absence of a sample. We believe that these frequencies are internally generated in

the vibrometer system.

4.3 Capacitance Detection

Figure 3.6 shows a schematic overview of the capacitive circuit we used to detect

displacements. Appendix B describes some of the design details of our circuit.

Briefly, the circuit functions by measuring how a carrier signal is modulated by

the capacitors’ changing displacement. The carrier is applied via a voltage to the

backbone of our structure and the current induced by the carrier is measured from

fixed comb fingers. In our circuit, this current is demodulated, giving us an output

voltage which is proportional to the displacement regardless of the frequency of

displacement (which is a problem with simpler capacitive detection circuits).
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4.3.1 Sources of Error

We can immediately propose a variety of factors which would trick the circuit

into presenting an incorrect displacement. In particular, anything which would

induce or cause loss of voltages or currents on the backbone or sensors would give

us an incorrect displacement. There are several places that problems can occur:

external wiring between the circuit and the package containing our chip (about

0.5 m), external wiring between the signal sources and the package (about 10 m),

the wirebonds connecting the package pins to the bonding pads on the chip (up

to 5 mm), on-chip wiring between bonding pads and our device (up to 5 mm),

internally within the device (up to 2 mm), and in the circuit (about 5 cm).

The latter source of error is easy to detect and fix. We simply connect the

circuit to a dummy structure simulating a chip and test its functionality. We

connected two identical capacitors to the circuit’s carrier and the inputs of its

current amplifiers. With this simple setup, we determined that our circuit works

properly without any unexpected behavior.

The other wiring issues are much more difficult to deal with. The best method

of reducing unwanted currents and voltages is to shield the cables. We therefore

built our vacuum chamber with this in mind, using shielded cables and connectors

as much as possible. See Figure B.1 for a photograph of our chamber and its coaxial

cabling. Shielded cables will not entirely prevent unwanted signals, however they

will greatly reduce the likelihood of them affecting our measurement.

Another general technique we used to reduce the effects of external signals

is to use a differential sensor. We fabricated two banks of displacement sensing

combs. When the backbone moves in one direction, one bank of sensors increases

its capacitance and the other reduces its capacitance. Thus, we have two almost-
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identical capacitors, under almost-identical conditions and the circuit is then able

to subtract any signals common to both.

Unfortunately, we do not have any equipment at our disposal to shield the

wirebonds which connect the package to the bonding pads on our chip. The best

we can do is to ensure that the wirebonds are separated from each other by as

much distance as possible, especially wirebonds carrying AC voltages or currents.

We also alternate signal wirebonds with ground wirebonds. This requires us to

place our bonding pads as far apart as possible without requiring the use of too

much chip area.

The on-chip wiring issue is the most difficult to deal with. The routing of signals

on the chip between bonding pads and our device is complicated by the fact that

our fabrication process does not allow more than one layer of metal interconnect.

This means that if we wish to ensure that two actuators on opposite sides of the

device are connected, we must run an on-chip trace around the perimeter of the

device. Figure 3.7 shows a photograph of one such device. On this particular

device, the traces connecting the sensing combs are on the left side of the device,

and the traces connecting the actuating combs are on the right side, providing as

much separation as possible between the large amplitude driving signals and the

sensing combs. There are also bonding pads and traces which we explicitly connect

to ground such that there is a minimal amount of shielding between traces.

The final issue was the most troublesome of all, as the physical layout of the

device is restricted by the design of the device as specified by its function. This

means that the backbone with the carrier signal to be detected is merely a few

microns from the actuating combs and parallel plate actuators. Recall that these

actuators have voltages up to 30 V at the frequencies that we are attempting to
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detect. Recall, as well, that the signals on our devices are carried by the aluminum

surface film. The silicon substrate is grounded, although one must remember that

the resistivity of silicon is relatively high compared to a metal film.

We found that on some devices, current was carried directly from the driving

signals into the measured output. For example, comb actuators when driven with

frequency f should only display motion at 2f and higher, yet the circuit was

measuring a signal at f . Our suspicion is that current from the driving signal was

carried from the actuators directly through the silicon substrate to the sensing

combs. Any measured amplitudes at an input frequency were considered suspect.

Another source of systematic error would occur if our comb sensors did not

linearly vary their capacitance with displacement. While we have reasonably accu-

rate control of the shape and profile of our microfabricated structures, anomalies

are possible. One of the most unpredictable of these is the “loading effect” which

changes the profile of a structure depending on how much silicon is exposed nearby.

See [Bertsch] for a better understanding of this issue.

4.3.2 Sensitivity Factors

Despite these sources of error, we found repeatable, reliable measurements were

possible with our circuit. Particularly useful was the independent technique of

laser interferometer displacement detection, as this system is immune to extraneous

voltages or currents.

The sensitivity of the capacitive displacement detection technique is directly

related to the amount of current induced by the carrier signal in the sensing combs.

The obvious conclusion is that one must add more combs and/or increase their in-

dividual area to increase the displacement sensitivity (i.e. to increase capacitance).
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We found that our final design was a reasonable trade-off between sensitivity, chip

area, and fabrication issues (the SCREAM process limits us to a minimum finger

spacing of about 3 µm). The capacitance of one sensing bank to the backbone

is calculated to be 245 fF. We measured the capacitance of ma104113 on an HP

4274A Multi-Frequency LCR Meter and found it to be 4.12 pF. The discrepancy

is due to wirebonding, fabrication issues (such as the thickness of the films de-

posited), and other undesired parasitic capacitances. On most other devices we

have tested (from different wafers), the capacitance is on the order of 290 fF.

Recall from I(t) = dC(t)V (t)
dt

that if the time-varying voltage is sinusoidal, the

current is proportional to the frequency of this sinusoid. The obvious conclusion

here is that the higher the frequency of motion, the higher the current. The higher

the current, the better our sensitivity. Even though our capacitive circuit removes

this frequency dependence from the output voltage, the increased sensitivity is

still apparent from the reduced noise floor at higher frequencies. This means our

approach of parametric amplification, wherein we mix the input signal to an output

at a higher frequency serves not only to provide gain to the input signal, but it

also increases the sensitivity!

The sensitivity is, of course, limited by the noise sources present. The differ-

ential nature of our system helps to reduce the effects of external noise sources,

electrical and mechanical. If there is mechanical noise acting on the chip (such

as from a vacuum pump), this noise will disturb both of the differential sensors

identically and will be subtracted out.
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4.4 Thermal and Mechanical Noise

In addition to the measurement noise, there are sources of noise inherent to our

MEMS. In particular, Brownian motion is induced in our MEMS due to the molec-

ular vibration in the mechanical structure. The noise force can be obtained from

the Equipartition Theorem, where the noise energy at equilibrium is 1
2
kBT ; kB is

Boltzmann’s constant and T is the temperature in degrees Kelvin. The derivation

in [Nguyen] leads to a noise displacement of:

x2
n

∆f
=

4Q
√

mkBT

k3/2
(4.1)

Note, it is not possible to eliminate this source of noise, although reducing the

temperature of the system to near absolute zero would help.

Another source of noise inherent to MEMS is mass loading noise, where the

different rate of adsorption and desorption of molecules on our structure creates

a phase noise. Section 4.4.3 of [Nguyen] contains a very good description of this

phenomenon. Briefly, it is minimized when both the temperature and pressure are

both either high or low. The best situation, of course, is near absolute zero at less

than 10−6 Torr. The phase noise is also reduced with increased surface area.

4.5 Undesired Nonlinearities

One last source of error we will encounter is due to the nonlinearity of our exper-

imental setup. Here we include the device as well as the measuring instruments

when considering nonlinearities. There are two common types we encounter: har-

monic distortion (as mentioned above) and intermodulation distortion.

The former occurs when there is a higher order nonlinearity somewhere in the

system that causes all of the harmonics to be present. For example, if we apply a
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100 Hz sine wave directly to the network analyzer, we will measure small peaks at

200 Hz, 300 Hz, and so on due to small nonlinearities in the input and processing

of the measurement. Additionally, if we apply that same 100 Hz sine wave to our

device, the nonlinearities of the springs, comb fingers, and so on, will cause further

harmonic distortion. When we measure our device with the capacitance circuit or

the laser vibrometer, then we have a complete system (source, device, detection,

measurement) which has an overall harmonic distortion.

Fortunately, our entire system is fairly immune to harmonic distortions (aside

from those mentioned in Section 4.1).

The other type of nonlinearity we encounter is more insidious. When there are

two signals of different frequency present in the system, they will mix together

due to all of the nonlinearities present. This sort of mixing is not much of a

problem in the AFM measurements, as we are only concerned with one frequency.

With the parametric amplifier measurements, however, this is a serious issue. This

intermodulation distortion serves to mix the signals together more than is intended

using the time-dependent electrostatic spring described in Section 3.3.4. This

means the displacement will be measured as being larger than its actual value.

Again, the distortion is caused by the nonlinearity of the entire experiment:

signal sources, mechanical springs, electrostatic combs, capacitive circuit and laser

vibrometer, and network analyzer. Figures 4.1 and 4.2 demonstrate the inter-

modulation distortion of our entire experimental setup using device 62224. The

distortion is as little as 35 dB below the driving signals!
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Figure 4.1: Independent application of two signals to es62224. This figure shows

the response of our device (from two separate measurements) to driving signals at

2987.5 Hz and 2988.5 Hz, as measured by the vibrometer.
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Figure 4.2: Demonstration of intermodulation distortion on es62224. This figure

shows the distorted response of the device when driven at 2987.5 Hz and 2988.5 Hz

concurrently, as measured by the vibrometer.



Chapter 5

Non-contact Resonant Force

Microscopy with Parametric

Amplification

In this chapter we will expand on the work done in Chapters 2 and 3. The goal

here is to construct a complete, functional system using the two independent com-

ponents studied in these previous chapters, namely to use a parametric amplifier

to amplify the sensed output of an AFM tip.

5.1 Device Overview

We build on the designs used in previous chapters. The device used in this chapter

(es62224) was described in Section 2.2 and is of the “es” class of devices. This

design is shown in Figure 2.4. The AFM characterization of a device using the

same design (the es62334 device) was discussed in Sections 2.3.1 through 2.3.3.

The device we test here was fabricated at the same time as and was adjacent to
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es62334 on the wafer.

The parametric amplifier design is almost identical to the design tested in

Section 3.4. There are no functional differences in the parametric amplifier portions

of these designs.

As mentioned in Section 3.2.3, we do not wish to use degenerate parametric am-

plification or any other similar technique which will feed power back into the input

signal (our AFM measurement). This would lead to the undesirable consequence

of our carefully characterized force gradient interaction being driven by additional

displacements. As seen in Section 2.3.2, the frequency of our sensor shifts due to

the vdW force as a strong function of interaction distance. If we were to rigidly

attach the parametric amplifier to the AFM, then the large amplitude pump and

the amplified output signal would lead to our detecting a higher force than if there

were no amplification. There would be, in effect, a closed loop wherein the very

act of amplification would change the measurement.

We therefore move our amplifier to a separate resonator with a higher resonant

frequency than the AFM sensor structure. The sensor structure (referred to as the

tip mass) is loosely coupled to the amplifier structure (the amplifier mass) with

a mechanical coupling spring. We now have a situation where the low frequency

AFM measurement transfers power efficiently to the parametric amplifier, but the

high frequency pump and output signals will not be efficiently transferred back to

the tip mass. See Figure 5.1 for a schematic of the system topology.

As discussed in Section 3.3.2, we selected a resonant frequency of about 6 kHz

for the amplifier portion of the system. The choice of resonant frequency for the

sensor portion was discussed in Section 2.2 and is approximately 3 kHz.
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amplifier
mass

tip
mass

sample
mass

atomic
force

“spring”

Figure 5.1: Schematic overview of how the complete system is interconnected. All

springs and masses here are mechanical, aside from the spring connecting the tip

mass to the sample mass. This is the displacement-dependent atomic-scale force,

and the term “spring” is used loosely here.
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5.2 Results/Discussion

Figure 5.2 shows the behavior of the AFM tip interacting with the sample on

our device without the benefit of parametric amplification. The high amplitude

Figure 5.2: Characterization of combined AFM/paramp es62224 device. The tip

is driven by a pseudo-random signal at 5 V between 1 and 3 kHz. The sample is

actuated towards the tip.

signals at less than 1 kHz are internally generated in our laser interferometer and

are always present. The 2496 Hz peak is the resonant frequency of the tip mass

when it is not interacting with the sample. When the sample approach actuator

is at 10.63 V (113 V2), the tip enters a bi-stable state between interacting and not

interacting. At higher sample approach voltages, the tip is interacting with the

sample and we observe the same frequency shift behavior as in Chapter 2. When

the sample approach voltage is about 18.4 V (339 V2), the tip and sample come

into contact.
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Concurrently with the tip entering an interacting state, we notice a peak at

5 kHz. Recall that our sample is a large spring-mass system. Unfortunately, the

resonant frequency of this sample structure is such that it is roughly in the same

range as our measurements. This peak is due to the combined spring-mass system

of the tip mass and the sample mass when coupled by the atomic force “spring”.

Note that after the tip and the sample contact, this peak is still present since the

tip and the sample continue to move together.

The 5944 Hz peak is the resonant frequency of the amplifier mass. Even though

we are not explicitly driving this mass, it is excited since we are driving our tip

structure with pseudo-random noise and it is coupled to the amplifier mass. When

the tip enters an interacting state, the resonant frequency of the amplifier mass

shifts to 6005 Hz. Recall from Figure 2.7 how the tip has a static displacement

when it is interacting with the sample in this design. Since the tip structure and

the amplifier structure are coupled, this static displacement is carried through the

coupling spring and the amplifier structure has a static displacement which slightly

affects its resonant frequency. The amplifier mass also continues to resonate after

the tip and sample are in contact.

Once we apply the pump to the amplifier, things start getting interesting.

Figure 5.3 shows the resulting behavior. Note how the pullin behavior of the tip

is mixed to a variety of frequencies. Also note that the mixed signals near the

resonant frequency of the amplifier mass have the highest amplitude.

Figure 5.4 shows a “cross-section” (i.e. the frequency response) of Figure 5.3

at a sample approach voltage of 10.8 V (117 V2), which is the point of highest gain

in this case. Here, we see that the amplitude of the input signal from the tip mass

is -28.1 dBV at 2898 Hz and the output signal is -17.65 dBV at 6145 Hz giving us



86

Figure 5.3: Parametrically amplified AFM measurement. The conditions are the

same as in Figure 5.2 except the parallel plate actuators are driven at 3 V p-p at

5976 Hz with a 1.5 V DC offset.
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Figure 5.4: Cross-section of Figure 5.3 showing the frequency response at the point

of highest gain. The sample approach voltage is 10.8 V (117 V2).
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a gain of 10.45 dB.

To make the conditions more favorable to high gain, we would need to increase

the pump amplitude so it enters a more efficient regime. We also need to move the

pump frequency so the output frequency can be exactly at the resonant frequency

of the amplifier mass.

In Figure 5.5 we increase the pumping to 7 V with a 3.5 V DC offset and

reduce its frequency to 5500 Hz. Note that none of the mixed harmonics are

near resonance until the tip is almost contacting the sample. Figure 5.6 shows the

frequency response under conditions of the highest gain, when the sample approach

voltage is 17.6 V (309 V2). Here, the input from the tip mass is -56.6 dBV at

2270 Hz and the output signal is -17.85 dBV at 6085 Hz. In this case, we have a

gain of 47.75 dB, well over two orders of magnitude stronger.

Note also how the input signal in Figure 5.5 is mirrored and crosses over the mir-

rored output. This is an example of degenerate parametric amplification, wherein

the output frequency is roughly equal to the input frequency, and where both are

about one half of the pump frequency.

The noise floor of the system during sample approach under non-amplified

conditions is about -87 dBV (from Figure 5.2). This means we have increased

our signal-to-noise ratio from roughly 33:1 to 2867:1, so we can drastically reduce

our pseudo-random tip driving signal or even eliminate it altogether and rely on

thermomechanical noise to generate the resonance peak at the tip.
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Figure 5.5: Parametrically amplified AFM measurement with high gain. The

conditions are the same as in Figure 5.2 except the parallel plate actuators are

driven at 7 V p-p at 5500 Hz with a 3.5 V DC offset.
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Figure 5.6: Cross-section of Figure 5.5 at the point of highest gain. The sample

approach voltage is 17.6 V (309 V2).
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5.3 Conclusion

We have presented a parametrically amplified atomic force measurement which

provides a gain of 47.75 dB. The system is fairly straightforward to construct,

although analysis is not trivial. Our system is entirely self-contained, including

sample scanning, tip actuation, signal amplification, and capacitive displacement

detection all on one chip. Everything necessary for the measurement, other than

signal sources, was created on one 6 mm by 6 mm chip with a very straightforward

fabrication process.

Although prior work has been performed using similar similar techniques none

have been MEMS-based, they rely on macroscopic manually assembled parts.

[Bruland] tested a Magnetic Force Microscope with anharmonic modulation, which

is a similar technique, although they did not quantify their gain. [Albrecht] de-

scribes their AFM experiments using frequency modulation (FM). This paper does

not quantify the gain either. The prior work on MEMS-based AFM systems and

parametric amplifiers are described in Sections 2.4 and 3.5.2.

It would seem that the bandwidth over which high gain is available would be a

large restriction on operation, however, a quick study of Figure 2.19 demonstrates

that a surface scan does not change the resonant frequency of the tip mass by

a large amount (roughly 500 Hz). Further, most practical AFM systems run in

“constant force” mode, wherein feedback is used to keep the system at the same

force by actuating the system to maintain constant tip/sample spacing. This mode

eliminates the need for large bandwidth amplification.

By integrating our parametric amplifier explicitly with the sensor, we amplify

our signal before it leaves the chip, thereby reducing possible deleterious influences

(via increased signal-to-noise ratio) from wirebonds, the package pins, and external
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wiring. One must remember, that even though most external wiring can be coaxial,

the portion of the wiring that goes from the chip to this external wiring is not.

This distance is on the order of one centimeter, and over this distance the signal

can pick up stray capacitance and electric fields due to the various driving signals

for the sensor.



Chapter 6

Conclusion

6.1 Summary

In Chapters 2, 3, and 5, we have presented the characterization and function of a

complete microelectromechanical system. Our system serves to mechanically am-

plify the behavior of an atomic-scale force sensor. We have demonstrated that this

amplifier complies with the basic tenets of parametric amplification and provides

a reasonable signal gain. We have demonstrated that our atomic-scale force sensor

detects the van der Waals and electrostatic forces between a tip on our MEMS and

an integrated sample. We have further demonstrated that we can connect the two

systems to build a mechanically amplified AFM.

Some features of our parametric amplifier are that it is:

• linear (power gain is constant over a range of input amplitudes),

• high power gain (we have demonstrated a gain of 316.2),

• wide enough bandwidth for practical applications,

• and fully integrated (has time-varying element and output bandpass filter).
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Some features of our atomic-scale force sensor are that it is:

• fully integrated (tip, sample, sample scanning, and displacement sensors),

• dominated by van der Waals forces,

• functional as a scanning capacitance microscope,

• capable of tuning the resonant frequency by up to 62.4%,

• and easy to operate (no assembly or alignment).

6.2 Future Directions

There are two directions one could take in expanding upon the work presented

here. One could further explore the properties of the devices presented here. Al-

ternatively, one could construct even more interesting systems using the building

blocks we have described.

The first category, further study of current devices, appeals to the scientist. A

thorough understanding of the issues that limit our MEMS and how to expand

those boundaries is an implicit task for any novel system.

The most intriguing of these tasks would be to develop and test a low-noise

version of our parametric amplifier. Given the amazing flexibility of MEMS design

rules, this would be an on-going evolution of better designs with lower noise. The

tantalizing goal of reaching the theoretical noise floor would be compounded by

the pursuit of more sensitive and accurate displacement detection techniques.

A critical element of any amplifier study is a thorough exploration of its lin-

earity, gain, and bandwidth characteristics. The gain of this design, although
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sufficient for our purposes, was far from the theoretical maximum. Further study

would seek to determine the loss mechanisms and enhance the gain.

The potential to characterize van der Waals forces and electrostatic forces on

this scale also merits further study. For example, the integrated nature of our

system allows one to deposit and test the differences between various thin films

under identical conditions. By removing the requirement of aligning the sample to

the tip, each new experiment would begin with the exact same conditions as the

previous experiment.

The same advantages also apply to studies of how the tip shape affects the

forces. We could modify the shape of the tip in a FIB and continue testing in the

same place we left off. Also worth studying is the possibility of testing ultra-sharp

tips, as described by [Reed].

Further examination of scanning capacitance microscopy is also warranted, as

we only briefly touched on this topic. The ability to scan the dielectrics between

the tip and the sample is of great interest to the electronics industry at present in

their quest to create ever faster transistors.

The second category of future work, applications, appeals to the engineer. The

task of taking a set of novel building blocks and constructing more novel devices

has endless possibilities.

Many doors are opened by the prospect of a MEMS amplifying signals without

the use of transistors. Almost every MEMS fabrication technique can take advan-

tage of parametric amplification, whereas the number of facilities that are capable

of integrating MEMS and electronics is very limited.

As mentioned previously, the fact that parametric amplification raises the fre-

quency of the output signal makes this technique well suited for capacitive dis-
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placement detection, furthering the goal of fully integrated MEMS.

If we were to scale our system such that the pump and output frequencies

were orders of magnitude higher, we could construct a variety of exciting applica-

tions in audio bandwidth amplification, ultra-high gain amplification, and on-chip

amplification of MHz and even GHz MEMS signals.

Future work with on-chip resonators with self-sustained oscillations such as

those described by [Nguyen] would allow an even further level of integration. Using

on-chip oscillators, we would be able to remove yet another external AC signal

(the pump). It should also be noted that it would be possible to create an on-chip

sustained oscillation through the use of a negative resistance parametric amplifier.

This is possible due to the regenerative nature of the negative resistance parametric

amplifier.

Coupled resonator systems with very high Q might be of interest for low noise,

wide bandwidth applications. As mentioned in Section 3.2.5, the coupling of res-

onators to achieve a large bandwidth is difficult to analytically model. It might

be worth the effort, however, as coupling these sorts of systems together does not

inherently increase the noise figure of the combined amplifier system as it would

in active amplification. This is due to the fact that the reactive element at the

core of a parametric amplifier does not have a built-in thermal noise source.

And, of course, our parametric amplifier design could be attached to just about

any resonant MEMS sensor (such as an an accelerometer or an STM as described by

[Miller]), for use in such diverse fields as biology, chemistry, microfluidics, medicine,

and seismology.

The AFM design we presented is also quite capable of interesting applications,

particularly when further work is performed in integrating a Z-motion onto the
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sample to provide full 3-Dimensional scanning capability. The integrated on-chip

sample is hardly a restriction when one considers the types of materials we would

be able to probe. It is possible to deposit layers of proteins, magnetic materials,

and stress-sensitive compounds on micromachined surfaces. Further, the potential

to probe the boundaries and mechanical properties of a droplet of liquid are quite

exciting.

Alternatively, it would be possible to create a sample holder for a macroscopic

sample (such as an optical fiber) and approach the tip to this sample. This ca-

pability would extend the functionality of our AFM system to even more exotic

samples.

In fact, it is not even necessary to consider the sample for an entire set of

applications for our AFM system. One could simply take advantage of the resonant

frequency shifting capability of our device and apply it to the set of applications

described by [Adams].

As [Adams] says at the conclusion of his thesis, “Once each piece is character-

ized, the behavior of the entire system can be studied by assembling the compo-

nents.” This is precisely what we have done here, assembling the work of [Adams],

[Miller], and others to build our parametrically amplified AFM. This is also what

we hope will occur with the components described in this thesis.



Appendix A

The SCREAM Process

The SCREAM process we use to fabricate our devices has been thoroughly de-

scribed in the literature. Here we merely outline the procedure. For more detail,

see [Shaw] and [Saif].

The first step (in Figure A.1a) is to deposit a thin layer of silicon dioxide

as an etching mask (about 1 µm). After this, we spin and pattern photoresist

(Figure A.1b) to define our structure. Next we transfer the resist pattern into

the oxide mask (Figure A.1c). After this, we perform a deep vertical etch (about

30 µm) using a Bosch process RIE tool (Figure A.1d). Following this step, we

deposit a thin (about 300 nm) conformal layer of oxide (Figure A.1e). We then

proceed to a vertical oxide etch, which clears the floor of oxide, but leaves oxide on

the sides and tops of the trenches (Figure A.1f). After the floor is cleared, we etch

vertically again (about 5-10 µm) to extend our trenches (Figure A.1g). Finally, we

release our mechanical devices with an isotropic silicon etch (Figure A.1h). The

last step is to define the electrical aspects of our system, when we sputter about

400 nm of aluminum on our wafer (Figure A.1i).

Figure A.2 shows a cross section of a SCREAM beam.
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Aluminum

Silicon Dioxide

Silicon Substrate

Photoresist

1a) Deposit mask oxide

1b) Pattern photoresist

1c) Pattern transfer

1d) Deep structural etch

1e) Deposit conformal oxide

1f) Anisotropic floor etch

1g) Deep extension etch

1h) Isotropic release etch

1i) Metal sputter

Figure A.1: Overview of the SCREAM process. See the body for details.
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Figure A.2: Cross-section of a SCREAM beam. This is a released MEMS spring.



Appendix B

Experimental Setup

This appendix gives a quick overview of some of the implementational issues en-

countered while pursuing this project. The most important decision one must face

is how to measure the displacement of the micromechanical system. There are

several techniques in common practice for measuring the displacement of a MEMS

device. Some of the more common techniques are:

Optical interferometry Must have line-of-sight from laser source to device, along

axis of motion. Limited maximum frequency due to speed of fringe counters.

Minimum amplitude limited by accuracy of phase multiplier. Absolute dis-

placement measurement.

Capacitive detection Must have well-shielded connections. Requires use of ex-

tra chip area for sensing. Requires application of carrier frequency or DC

Voltage offset. Maximum frequency limited by gain-bandwidth product of

current amplifiers. Minimum amplitude limited by shielding and noise in

current amplifiers. Relative displacement measurement.

Piezoresistive Requires special fabrication techniques (SCREAM not sufficient).
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Requires application of steady-state current through piezoresistive element.

Requires very sensitive measurements. Relative displacement measurement.

Stroboscopic SEM Very difficult to automate testing, as measurement is ac-

quired by viewing video output of SEM. Device charging may skew resulting

displacement accuracy. Minimum amplitude limited by electron optics and

vibration damping. Absolute displacement measurement.

Ultimately we settled on the first two techniques (interferometry and capaci-

tive), as they complement one another. One provides accuracy where the other

technique is known to have flaws. In the end we constructed a custom vacuum

chamber to measure the displacement of our device using both techniques concur-

rently.

Great care was taken to ensure that the sample was as close as possible to

the viewport such that it was within the working distance of the lenses on the

optical microscope to which the laser interferometer was attached. At issue was

the constraint on the total height of the vacuum chamber as our microscope head

had a maximum height over the surface upon which the chamber was located.

Particular pains were taken to ensure clean, well-shielded connections to each

pin of the package to eliminate as much parasitic capacitance as possible. Although

the sample is placed in a ZIF socket, we found that the feedthrough from adjacent

pins was not an issue if we applied ground to every other pin in the socket. That

is, pins 2, 4, 6, 8, and 10 were ground, while pins 3, 5, 7, and 9 carried signals.

Coaxial cables connect the pins of the ZIF socket to the coaxial feedthroughs on

the chamber bulkhead.

By taking these precautions, we found we could acquire very close fits between

simultaneous measurements with both displacement measuring techniques. This
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Figure B.1: Photograph of the vacuum chamber used for capacitive and vibrometer

testing. The white wires visible through the viewport are coaxial cables. The

ground lines of all of these cables are connected together to one of the feedthroughs

so they may be isolated from the chamber itself.
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allowed us to calibrate the capacitive measurements against an absolute displace-

ment scale and to verify anomalous measurements as being actual or due to the

idiosyncrasies of one measurement technique. Using two complementary measuring

techniques has greatly increased our confidence in the results of our experiments.

The circuit we used to capacitively detect the displacement of our device was

designed by Hans Jorgensen of Kionix Inc. and was used by arrangement with

Scott Adams, also of Kionix Inc. As this circuit was designed at great expense

for industrial purposes, we do not feel comfortable publishing the exact circuit

diagram. A few words, however, will suffice to guide the industrious reader in

building their own similar circuit. The circuit has a 100 kHz sine wave generator,

which is applied to the device as a carrier. This carrier is modulated by the change

in displacement of a capacitor on the device due to the familiar I(t) = dC(t)V (t)
dt

which leads to a change in the amplitude of the current as the capacitance varies.

As the capacitance varies at a much lower frequency than the carrier (in this circuit,

the maximum detectable frequency is limited to 8.6 kHz), we can simplify down

to I(t) = C(t)dV (t)
dt

.

This circuit then uses three stages of current amplifiers and then performs syn-

chronous demodulation (using the same 100 kHz carrier and the amplified current

as inputs). The output is then filtered to remove the 100 kHz carrier and ampli-

fied some more. This produces, at the output, a signal which is proportional to

the displacement of the device. Since the circuit uses synchronous demodulation

we achieve a flat response with regards to frequency, all the way down to static

displacements and quasi-DC motion.

Simpler circuits may be used if one is not concerned with the relative amplitudes

of different frequencies. An example of one is presented in [Miller].
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Figure B.2: Actual size photograph of the circuit used for capacitive testing. Note,

all inputs and outputs are coaxial, and the input amplifiers are shielded by a sheet

of metal.
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