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On-chip preamplification of signals

•Amplifier integrated with sensor

•Reduce effect of parasitic capacitance

•No transistors

•No need to integrate VLSI with MEMS

•Low noise gain

•Upconvert to a higher frequency

Parametric Amplification Motivation
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To use nonlinear mixing to raise small, low frequency 
signals above the noise floor

•  Using a characterized nonlinear component in an otherwise linear
system, we can convolve a small amplitude, low frequency 
signal (signal) with a high frequency, high amplitude signal
(“carrier” or “pump”)

•  This is a subset of a phenomenon known as ‘mixing’, wherein the
convolution of two signals produces the set of all of the 
harmonics.

•  If, at the output, we filter all but one of the harmonics, then we
can demodulate this signal to restore the initial input.

Parametric Amplification Premise
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Parametric Amplification

If certain criteria are met, then the system will 
function as a parametric amplifier.
These conditions are:

•  Single-valued, lossless, non-linear device
•  Weak coupling between modes in non-linear device
•  Perfect filters (i.e. non-resonant frequencies see an open circuit)
•  Circuit layout as such:
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If these conditions hold, then the Manley-Rowe equations reduce to:
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= 0 where gain (P 1,1 /P1,0 ) depends
only on the ratio of frequencies
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Amplitude Modulation
Given arbitrary modulating signal, f(t), and a carrier,
cos(ω0 t), we convolve to get the modulated signal:
f t( ) ⇔ F ω( )
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f t( )cos ω0t( )⇔ F(ω) ∗ G(ω ) = π
2 F ω −ω 0( )+ F ω + ω0( )[ ]

g( t) = cos ω 0t( )= 1
2 ejω 0t + e jω0 t( )⇔ G(ω ) = π δ ω −ω0( )+ δ ω + ω0( )[ ]
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The System Being Tested 

Using only one function generator, we can find the frequency response
characteristics of the resonator system:
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Operation as a Mixer
According to the previous schematic, the force applied to the resonator
(and thus the displacement) is proportional to the input voltage squared.

If we have two sine waves in V, this leads to:

F ∝ Va0 + Va sin(ωat)( )+ Vb0 + Vb sin(ωbt)( )( )2

Va sin(ω at)( )2
+ Vb sin(ωbt)( )2

Vc0 = Va0 + Vb0

F ∝ Vc0
2 + 2Vc0Va sin(ωat) + 2Vc0Va sin(ω at) + 2Va sin(ωat)Vb sin(ωbt) + ...

Recall, multiplication in time domain is equivalent to convolution in
frequency domain.
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Assumptions/Terminology:
•  Non-linear capacitor, no hysteresis, voltage is a single-valued 

function of q, 

•

•

•  For Real q, 

v(q)

Manley-Rowe Power Equations 

q t( )= Qm,n exp[ j mω1t + nω2t( )]
n= −∞

∞

∑
m = −∞

∞

∑

fm,n = mf1 + nf2
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Manley-Rowe Power Equations

i = dq
dt

= j mω 1t + nω 2t( )Qm,n exp[ j mω 1t + nω 2t( )]
n =−∞

∞

∑
m = −∞

∞

∑

v = Vm ,n exp[ j mω1t + nω2t( )]
n=−∞

∞

∑
m= −∞

∞

∑
Find Fourier coefficients:

Im, n = j mω 1t + nω 2t( )Qm,n

Vm ,n = 1
4π 2 v(q)exp[ − j mω 1t + nω 2t( )] d (ω1t)

0

2π

∫ d ω 2t( )
0

2π

∫

Multiply               and         and sum over all m,n to find power:Vm ,n

Power = 2ℜ VI*( )
mVm,n Im ,n

*

mf1 + nf2n =−∞

∞

∑
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∞

∑ = 1
2π v ∂q

∂ω1t d(ω1t)
0

2π

∫ d ω2t( )
0

2π

∫

jmQm,n
*
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Manley-Rowe Power Equations

Since q is single-valued and 2 π periodic in ω1t and ω2t, the RHS of the
previous equation equals zero.

This gives us the Manley-Rowe Power Relation for ω1:
mPm, n

mf1 + nf2n =−∞

∞

∑
m = 0

∞

∑ = 0

Similarly if we follow through with ω2, then we get:

nPm,n

mf1 + nf2n=0

∞

∑
m = −∞

∞

∑ = 0

Note, there are very few assumptions involved in this derivation, and it
can be applied to other non-linear devices (inductors, mechanical elements).

Also note that the Manley-Rowe power equations are:
•  Independent of power level
•  Independent of load impedance
•  Independent of non-linear function
•  Not limited to small-signal analysis
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The state (i.e. displacement) of the system was detected using a 
capacitive sensor via amplitude modulation techniques 
(carrier frequency = 100 kHz, bandwidth = 8.6 kHz).

All leads are coaxial/shielded from the pins of the differential amplifier to the 
pins of the packaged device to reduce parasitic capacitance/ambient
effects.

Measurement Techniques
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The noise floor of the circuit corresponds to ~0.9 nm, as calibrated by a 
Polytec OFV3001 Laser Vibrometer system.

The Laser system was also used to independently verify most measurements.

Measurement Techniques



Cornell UniversityM. B. Wolfson and N. C. MacDonald

The Test Setup 
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MEMS Fabrication

1i) Metal sputter
1b) Pattern photoresist

1c) Pattern transfer

1d) Deep structural etch

1a) Deposit mask oxide

1e) Deposit conformal oxide

1f) Anisotropic floor etch

1g) Deep extension etch

1h) Isotropic release etch

Aluminum

Silicon Dioxide

Silicon Substrate

Photoresist

Silicon Dioxide

Silicon Substrate

Photoresist

Aluminum

1) Deposit mask oxide

2) Pattern photoresist

3) Pattern transfer

4) Deep structural etch

5) Deposit conformal oxide

6) Anisotropic floor etch

7) Deep extension etch

8) Isotropic release etch

9) Metal sputter
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We build our MEMS from a standard toolkit of components which serve
particular functions.

The comb drive is a linear actuator, its force is not a function of the displacement

F(V ) =
nε0V

2h
d

The parallel plate drive is a nonlinear actuator

  
F(V ) = 1

2 ε0hl
V

d − x
⎛ 
⎝ 

⎞ 
⎠ 

2

The folded spring is a linear spring

F(x) = −kx

MEMS Design Components
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MEMS Design for paramp
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Here, we see that applying a bias on the parallel plate drives does indeed
serve to modify the behavior of the system.

Input is pseudo-
random signal from
HP 89410 VSA at 4V

Only maximum at
each point is shown
(i.e. resonant freq)

Nonlinearity Characterization
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Here, we demonstrate that the output amplitude depends on the impedance
in the system (impedance is least at resonance, 5.91 kHz).
The system is pumped by an 8V p-p signal at 5.6 kHz
The input signal is ramped from 10 to 400 Hz at 8 V p-p

Paramp Characterization
A

m
pl

itu
de
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Here, we demonstrate that the gain depends on the impedance
in the system (impedance is least at resonance, 5.91 kHz).
This data is extracted from the previous plot (the same conditions apply)

Paramp Characterization
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Here, we demonstrate that the gain observes the Manley-Rowe power 
relationship.  That is, the gain is proportional to the ratio of frequencies

Pump at 5 kHz

Signal ramped from 
20 to 350 Hz 
averaged over input 
amplitudes of 2.5 V 
to 10 V p-p

Away from 
resonance

Paramp Characterization
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Here, we see that we can achieve very high gain with this device under
the right conditions

Pump at 5.7 kHz from
4 to 8 V p-p with a 
3 V DC offset

Signal ramped from 
0 to 100 Hz at 
10 V p-p

Max gain is
316.2

Paramp Characterization
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Here, we see that we can achieve a linear response over a limited range

Pump at 10 kHz at
8 V p-p

Signal measured 
at 5 frequencies

Paramp Characterization
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There are several forces that occur in the atomic 
distances we are interested in:

• attractive electrostatic SCM

• capillary (up to a few hundred Å)

• attractive van der Waals (a few Å to a few hundred Å) non-contact AFM

• repulsive van der Waals (up to a few Å) contact AFM

• chemical bonds (up to a few Å)

• magnetic MFM

Scanning Force Microscopy
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All of the forces listed before are a function of tip/sample gap.
This forms a force gradient.

If our mechanical system has a second-order behavior:

)()( eexciteatomicmechanical VFxFxkxcxm =−++ &&&

then the resonant frequency becomes:

⎟
⎠
⎞

⎜
⎝
⎛ −∝

x
xFk

m
f atomic

∂
∂ )(1

As long as the force gradient is of the same order of magnitude as the
mechanical restoring force of the spring, then we will observe a 
frequency shift as the tip approaches the sample

Force Gradient
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For experiments with a bias on the 
sample, we break the fuses and the 
sample and tip are no longer electrically 
connected

MEMS Design for AFM
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MEMS Design for AFM
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Here, we demonstrate that the resonant frequency depends on the distance
between the tip and the sample.
The system is driven by a 5 V pseudo-random signal
The sample approach actuator is ramped from 16 to 19.5 V.

AFM Characterization
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Here, we demonstrate that the output amplitude depends on the impedance
in the system (same conditions apply as previous slide).

This trace shows the
maximum amplitude 
at each step.  This 
corresponds to the 
resonant frequency 
of the device at each 
step.

AFM Characterization
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Here, we see that a sample bias drastically affects the frequency response

Drive with pseudo-
random signal from 
HP89410A at 5 V

Sample bias ranges 
from 0 to 20 V

Effect of Bias on Force Gradient
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Here, we have deposited 40 nm of gold on top of the original aluminum tip

Drive with pseudo-
random signal from 
HP89410A at 5 V

The added mass is 
responsible for less 
than a 2 Hz shift

Effect of Sample Composition
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Here, we compare the change in frequency due to the addition of a bias and
a change in the sample composition

Drive with pseudo-
random signal from 
HP89410A at 5 V

Note how gold 
sample shifts more 
as the tip/sample 
gap decreases

Comparison of Bias and Material
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Here, we can see all of the harmonics generated

Note how the harmonics near the pump are largest amplitude

Pump is 3 V p-p
with 5 V DC 

Signal is 
pseudo-random
at 5 V from 
1 to 3 kHz

Complete System Characterization
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We rotate the previous data to give a clearer view of the relative amplitudes

Complete System Characterization
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Clearer view of gain.  This is a “cross-section” at a sample approach
voltage of  10.8 V

The tip is resonating at 
2898 Hz at -28.1 dBV

The output signal is at 
6145 Hz at -17.65 dBV 

Gain is 10.45 dB.

Complete System Characterization
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XY Stage Schematic
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Parametric Amplifier Subsystem
•Gain of 316.2
•Linear amplification
•Observes Manley-Rowe behavior

AFM Subsystem
•Detects van der Waals forces (AFM)
•Detects electrostatic forces (SCM)
•Integrated sample

Complete System
•Parametric amplifier mixes and amplifies results of AFM sensor
•Maximum measured gain of 244
•Fully integrated (no assembly or alignment)

Conclusion
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